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Abstract

Target of this seminar project was to implement a Wave Field Synthesis VST plu-

gin. The algorithm used in the plugin is based on and aligned with previous work.
The fundamental mathematical formula for the algorithm is the loudspeaker driving
function, which consists of a filter, a delay and a gain block. The equations for these
blocks are no longer valid when the virtual source position crosses the loudspeaker
line. This is addressed by inverting the delay and adjusting the equations for the
gain factor. Additionally the typical Doppler effect is avoided by limiting the update
speed of the virtual source position for the delay line. Finally, a circular loudspeaker
arrangement was implemented and derived from the calculations of the linear loud-
speaker array.
The structure of the plugin is explained in this work alongside an overview over the
classes and the data flow that was implemented. We did not have access to a loud-
speaker array, so the plugin was tested in a binaural setup with recorded impulse
responses.
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1 Introduction

Wave-field synthesis aims to synthesize the wave field of a virtual primary source for a
given listener position by using secondary sources, usually loudspeakers. In the present
approach a 2.5D approach is used - the mathematical foundation is built on 3D theory,
while the implementation uses only two dimensions.

This work begins with the basics of wave field synthesis. There the mathematical concept
and the mathematical building blocks for an audio signal chain are explained. Next the
audio signal chain and the two possible loudspeaker arrangements are explained in more
detail.

The main goal of this work was a real-time audio plugin, which is shown in the next
section. The program overview, the data flow, the GUI (graphical user interface) and the
real-time aspects are depicted in more detail. The work closes with a binaural showcase
and the conclusion.

2 Basics of Wave Field Synthesis

This section briefly describes the basics of the state-of-the-art wave field synthesis ap-
proach. This includes the mathematical concept and a simplification of the driving func-
tion, which leads to the building blocks for the audio signal chain.

The approach was already described in detail in a seminar paper by Lukas Golles and
Lukas Maier [3]. Additionally, this paper took great inspiration from Gergely Firtha’s
PhD thesis [1].

2.1 Mathematical concept

We assume a point source X, which serves as our (primary) virtual source. We also de-
fine a source-free volume €2, which is limited by infinitesimally spaced secondary sound
sources. These can be described by the free-field Green’s function

e—ikr

G(r) = ey

Amr

Here, k£ denotes the wave number @, f the frequency, c the speed of sound and r the
distance between the source and the receiver. Next we assume a listener position y inside
the volume €. For this listener position the Kirchhoff-Helmholtz integral is defined as

ply) = ]g (6000 VG(ray) ~ Glray) V(1) dS(). @)

where 7, ,, = ||s—y]| is the distance between a secondary source and the listener position,
and rs, = ||s — || is the distance between the same secondary source and the primary
source. Secondary refers to the representing sources on the contour 02, while the primary
source is the virtual source whose field should be reconstructed by the sources on 0f2,
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within the volume ). This is shown in figure 1.

V denotes the gradient, while 02 is a surface normal vector at the boundary 0f) of the
volume, whose length is proportional to the size of the differential surface path 02 =
nos).
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Figure 1: Concept of the wave-field synthesis, using primary source, a secondary source
and the listener position [3].

We calculate the first derivative and find out that the gradient of the Green function can
be approximated with

Vr = . 3)

This leads to a high-frequency approximation of the Kirchhoff-Helmholtz integral defined
as

) =ik f GGl (22 -2 “’) a0(s). @

rs,y rS,iI:

In the next step we use the stationary phase approximation [?] to evaluate the integral. We
may do this because we may assume that we have sinusoids with rapidly oscillating phase
arguments. After using the stationary phase approximation and simplifying the terms we
derive the driving function

ik max {(s — x)"n,0}
— e

_ —ik Ts,x
b= 2 r2 ' ©)
. max S—x Tn
It already consists of a the filter term % the gain term M and the delay term

e~ *rsx With the maximum operator we avoid destructive interference, which would be
caused by secondary sources producing waves that propagate into the wrong direction
within €2.
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2.2 Simplifying the driving function

It is possible to further simplify the driving function by using a 2.5D! approach. For that
we neglect the interval over the y-axis. This simplifies the driving function to

k S S,x 1 —1
D= ;—W %73 max {(s — )" n(s),0} e "= (6)

Now we can even further simplify this by assuming two kinds of reference: line and
circle. For line reference, the wave-field is ideal for a reference line, which runs through
the listener position and is parallel to the x-axis (see figure 7). The driving function then

takes the form
|yy —ik
zrsym. 7
Vi o e @

Note how the gain part of this driving function is independent of the x-component of the
listener position.

For circle reference, the wave-field synthesis error is minimal in a half-circle around the
listener position. The driving function for this form is

k R_Tsw 1 —ikr
VoV TR e (8)

In total this leaves us with the building blocks for the 2.5D wave-field synthesis in table .

Filter Gain Delay
2.5D line reference | ik —u, mﬂl At = ==

2.5D circle reference | ik —Ty4/ Borse 1_ At = ==

2m-R rl2 c

Table 1: 2.5D wave-field synthesis blocks.

3 Signal chain

For simplicity we assume a mono input as source signal. In any other case, the current
version of the implementation mixes down the channels to mono before processing. The
driving signal for each loudspeaker consists of a (high-pass) filter, a gain factor and a
delay. Since the filter is the same for each loudspeaker it gets applied first. Afterwards
each channel gets its individual gain factor and delay depending on the position of the
speaker in relation to the source and the speaker.

In [3] two different variants for calculating these parameters are proposed: The first ver-
sion defines a line in parallel to the linear loudspeaker array, for which the sound field

!'The mathematical foundation still uses a 3D approach, but we only integrate over two dimensions.
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gets optimally synthesized. The second variant uses a reference circle (with every point
of the circle being equidistant from the source). In this algorithm we mostly focus on the
first variant and the circle reference was not included in the current implementation.

lMono signal
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Figure 2: Signal flow from mono source to loudspeaker signal

3.1 Filter

Each loudspeaker is assigned to a point on the reference contour. The ideal synthesis line
is therefore discretized. This results in a frequency limit up to which the calculations in
chapter 2.2 are valid. The exact aliasing frequnecy is calculated in [2] as,

C

As(|sin(max(0,,.))| + | sin(max(6,,,))])’ )

fal =

where 0, , refers to the angle between the normal vector of the synthesis line and the
source and 0, ,, refers to the angle between the normal vector of the synthesis line and the
respective loudspeaker. This results in a worst case scenario, where the aliasing frequency

equals to
c

f al — QTAS
In the test environment in [3] a loudspeaker setup with a distance of 15.1 cm between
speakers was used to record impulse responses. These were recorded with an artificial
dummy head, so that the loudspeaker signals could be converted to a binaural signal. This
way the algorithm/plugin could be tested roughly without having the loudspeaker array

(10)
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available. For this dummy-head-virtualized configuration, that is described in more detail
in [3], the resulting aliasing frequency lies at around 1136/ z. The filter in Fig. 3 was used
as WFS equalization. It features a high-pass filter that decreases with approximately 3dB
per octave below 1126 Hz, and it is applied to each speaker signal. For the implementation
a FIR-Filter with around 70 coefficients was used.

FIR filter response @ fs = 44.1 kHz
T
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Figure 3: Magnitude spectrum of WES equalization filter

The use of a fixed FIR-filter results in several problems which, due to time constrains,
were not addressed as of the writing of this documentation:

e Different sampling frequencies
Depending on the sampling frequency of the DAW in use, the cut-off frequency
gets shifted.
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Figure 4: Magnitude spectrum of applied FIR-filter with varying sampling frequencies

e Different distance between speakers
The cut-off frequency is only valid for a 15.1cm distance between speakers and can
increase drastically if the speakers are further apart. Calculations for significantly
less dense loudspeaker arrangements are not valid.

An alternative filter using an IIR architecture is proposed in [4], but was not further pur-
sued for simplicity.

3.2 Gain

From the definition of the driving function we get an equation for the channel specific
gain,

gain = —x | L (11)
T\ 2wyl + lzyl) 32

)

where |z,| is the distance along the y-axis from the source to the speaker, |z,| is the
distance along the y-axis from the listener to the speaker and r; , the distance from the
virtual source to the speaker.
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2m -8.7m -7.3m -5.8m -4.4m -2.9m -1.5m 1.5m 29m 44m 58m 73m B.7m

=1.4m

-2.9m

-4.3m

Figure 5: GUI snapshot with relevant geometric parameters drawn onto it

Since the plug-in only gets blocks of audio data and the source position does not get
updated every audio sample, to provide smooth transitions within the signal blocks, a
sample wise interpolation was implemented with a linear ramp. Additionally the gain has
to be limited because in close proximity to the source, the speaker signal power could
diverge otherwise.

Focused source

So far we needed to assume the virtual source to be *behind’ the loudspeaker array (in
the positive y-half-plane) because only for this case, the calculations are perfectly valid
within 2. In case the end user of the plug-in wants to position the virtual source between
listener and speaker array, as a focused source the gain factor needs to be adapted to:

. |3/y| 1
= — — 12
gain \/ 27 ([, — [2y]) 715 (12)

)

This way, the amplitude increases if the array line is crossed and the result sounds rea-
sonable. Finally, if the virtual source moves even further from the loudspeaker array and
goes beyond the listener, there can no longer be any reasonable synthesis at the position
of the listener. For simplicity the gain is automatically muted as soon as the source enters
this region.
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3.3 Delay

The delay
At = —= (13)

depends on the source and the loudspeaker positions. Justas with the linear interpolation
of the gain within the signal block, also the delay can be linearly interpolated to account
for a change in the position of the virtual source. Sample-wise interpolation of the delay
provides smooth transitions.

However, rapid movement of the virtual source position causes a Doppler effect. This
effect changes the pitch of the audio source significantly, unfortunately differently so
for every loudspeaker. Several ways can be formulated to counteract this issue (for a
refined mathematical model see [1]). Our implementation chose a sample-wise limit for
the change of delay. If the limit is chosen properly, the Doppler Effect can be mostly
avoided. However, the virtual source might be lagging behind the GUI positioning of the
user.

float delayInSeconds = distanceSourceSpeaker / speed0fSound;

float delayInSamples = delayInSeconds * sampleRate;

float deltaDelayInSamples = (delayInSamples - previousDelay) / (
nSamplesInBuffer - sample);

deltaDelayInSamples = jlimit(-0.1f, 0.1f, deltaDelayInSamples);

delayInSamples = previousDelay + deltaDelayInSamples;

writePointerQutputChannel [sample] = delayLine.popSample (O,
delayInSamples, updateRingBufferReadPointer) ;
previousDelay = delayInSamples;

Listing 1: Calculation of delay in code

In these lines of code, the (fractional) delay gets updated sample by sample. The changes
in delay, compared to the previous sample, get limited (line 4) and the corresponding
sample is read (line 9).

Focused source

When the virtual source moves over the line of loudspeakers toward the listener, it be-
comes a focused source. In order to achieve a focused point source, we need the loud-
speaker signals to arrive at this position at the same time. In contrast to the calculations
before, the delay to the closest loudspeaker is not the shortest but the longest one this
time. The delay for a source beyond the loudspeaker array

At = st (14)
C
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is now a negative value. Since the plug-in runs in real-time, negative delays need to be
made causal by adding a common delay. We fixed this problem by checking all loud-
speaker channels for their delay and subtracting the lowest delay from each channel. This
way, the lowest delay is forced to zero. A problem with this approach is, that if the plug-
in is used on multiple tracks, relative delays between tracks get uncontrolled. Thus each
instance of the plug-in finds its own lowest delay but has no knowledge of the other in-
stances. Another approach proposed was to always use an additional fixed offset-delay
that compensates the 'negative’ delays. This alternative would fix some issues but in
this case, there would always be an additional bothersome delay. If the offset-delay is
not chosen large enough, there could again be problems with a negative delay for some
speakers.
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4  Circular loudspeaker arrangement

As this implementation uses the formalism reviewed in [3], a circular loudspeaker array
was implemented according to the formalism outlined there for filter, gain and delay. The
aforementioned literature does not mention a circular arrangement of loudspeakers. So
for the driving signals of each speaker the approach was adapted to fit this geometry.

First, the listener position is always assumed to be in the center of the circle. A new axis
between listener and source is spanned. For the gain calculations for the circular array,
the positions of listener and source along the y-axis were necessary. Here we use the same
calculations but along this new axis called y,,¢q,:

. |yy | 1
g \/ T E L (>

B

Figure 6: Circular loudspeaker arrangement

The idea is to use the same calculations as before while treating the connecting line shown
in Fig. 6 like the y-axis before. Depending on the source position, the ideal synthesis line
changes because it is always normal to this line. A sweet spot in the middle should persist
in any case.

Another problem is that for circular arrangement speakers that are farther away from the
source than the listener is, need to be disabled. If the source comes from in front of the
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listener, the gain of the speakers behind the listener needs to be set to zero.

This implementation should only be considered as a draft. There are algorithms that
provide accurate driving functions for the circular array. The plug-in offers the graphical
user interface and set-up but the algorithmic aspect can and should be improved upon.
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5 Plugin implementation

Here the main goal of this work, the WaveFieldSynthesizer real-time VST plugin, is ex-
plained in more detail.

5.1 Graphical User Interface

For an easy understanding of the plugin it is good to first show the GUI.

WaveFieldSynthesizer

2m -8.7m -7.3m -5.8Bm -4.4m -2.9m -1.5m ; 29m 4.4m 5.8m

Line 2 17.6m

Arrangement # Loudspeakers Array length

Figure 7: Screenshot of the GUI using linear loudspeaker arrangement.

The interface is divided into 3 parts: the title bar, the main area with the XYPad and the
controls, and the footer with the OSC interface and the version number. Table 2 further
explains the different controls for the user.
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Control Element Action

XYPad Source and listener position can be dragged here.

The background is static and updated only when slider values change.
Zoom Zoom factor in the XYPad, logarithmically spaced between 0.1 and 10.
Arrangement Dropdown menu with either line or circular arrangement.

# Loudspeakers The number of loudspeakers in the user’s arrangement. Internally
the plugin limits it to the maximum number of available channels.

Array length Total length of the loudspeaker array, measured between center of
leftmost and center of rightmost loudspeakers.

Table 2: GUI controls for line arrangement

In addition to these controls there are the bus setup controls in the header bar as well as
the OSC control element in the footer bar.

The array length control only applies for a loudspeaker array in line arrangement. To
show the difference between the two arrangements the next figure shows the plugin using
a circle arrangement.
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WaveFieldSynthesizer
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Figure 8: Screenshot of the GUI using circle arrangement.

Instead of the array length slider there is now an array radius slider which controls the
loudspeaker array radius. Additionally there is a rotation control slider that can be used
to give the first and otherwise frontal loudspeaker a rotational offset.

5.2 Class description

Some of the classes in this plugin are directly derived from the JUCE framework. The
classes that apply specifically for this wave-field synthesis are manually designed and
implemented.

WfsAudioProcessor This is the main processing class of the plugin. It is the equiva-
lent to what is usually called the PluginProcessor class in JUCE. It takes care of
setting up all audio-related plugin components, and of continuously receiving and
processing the audio sample blocks. It also holds the audio parameter object, which
is directly linked to the corresponding GUI controls. Specifically for the WFS it
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also holds 3 additional objects.

The first one is the FIR-filter at the beginning of the WES signal chain. Next is a
circular buffer, where audio samples are stored. It implements a delay line by read-
ing from it with a variable sample offset. The third is the WfsSpeakerProcessor
array. It is used to manage the loudspeaker coordinates and to compute the gain and
delay of each loudspeaker.

WfsSpeakerProcessor Each loudspeaker is represented by an object of this class. It
stores the respective loudspeaker coordinates and channel, as well as the write
pointer to the corresponding output channel in the main audio buffer.

It implements functions to compute delay and gain, and also to write the processed
WES signals to the output audio buffer. These functions need to be called by the
WfsAudioProcessor.

WfsAudioProcessorEditor This class creates and updates the GUI. In the JUCE frame-
work this class is usually called the PluginEditor. In addition to setting up the GUI
it also manages the callbacks that get triggered each time a GUI control changes
through user interaction.

WfsXyPad This class plots the source and the listener position in the GUI. It also redraws
both positions if another GUI control parameter affecting the positions is changed.
Additionally it highlights an active position by drawing a white circle around the
position a user is hovering over.

WfsXyPadBackground This class renders the background of the XYPad in the GUL
This includes the loudspeakers, the coordinates and the blue background rectangles.
Drawing these components requires a decent effort by the CPU. To avoid having
this effort each time the source or the listener position are updated, the background
is logically decoupled from the positions. It is only redrawn if one of the knob
controls changes.

5.3 Program overview and data flow

Figure 9 shows the program overview, with all the classes, the DAW, and the data flow
between the objects in the class.
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WisAudioProcessor Loudspeaker coordinates WisAudioProcessorEditor
Audio samples -
- Manages AudioParameters - Creates and updates GUI
Parameter values from controls
DAW Environment parameters - Processes audio < - Listens to changes in controls
(sampleRate, blockSize, ...) y
- Sets update flags

Updated settings . Source a_n_d
listener positions
Audio samples and

source + listener positions

WfsSpeakerProcessor WisXyPad
- Stores loudspeaker settings - Controls source and listener positions
- Processes delay and gain - Holds and updates background

Figure 9: Program overview with all classes and data flow.

5.4 Real-time safety

The program implements some resource-consuming update tasks, e.g. updating the loud-
speaker array or the GUI background. In order to ensure real-time processing these up-
dates are handled asynchronously.

Whenever the WfsAudioProcessor detects that an update is needed, it sets the corre-
sponding update flag. The update routine is handled in either an asynchronous timer, or
in a place where it cannot affect the audio processing.

This is a list of the update flags:
e redrawlLoudspeakers
e redrawXyPad

e updateLoudspeakerArray

6 Binaural showcase

Due to the ongoing Corona-pandamic we did not have the opportunity to test our plug-in
with a physical array of loudspeakers. However binaural impulse responses of such an
array had been recorded in a previous work. These impulse responses used a linear set-up
with 24 loudspeakers, spaced by 15.1cm. An artificial dummy head was placed 2 meters
away from the setup and for each loudspeaker and ear an impulse response was recorded.
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Figure 10: Setup for recording binaural impulse responses

Two binaural example recordings have been made and uploaded as videos:

e speech demo

e musical demo

In order to use the plugin in its binaural version, the user needs a plugin that can convolve
these 48 impulse responses in real time. We recommend Matthias Kronlachner’s mcfx
convolver. The IRs and an additional guide on how to use them can be found in the same
repository as this documentation.

7 Conclusion

Our work implemented and tested a real-time wave-field synthesis plugin. It is based on
a 2.5D approach, where the electroacoustic sources use 3 dimensions, but the final place-
ment of sources and virtual sources only uses 2 dimensions.

The wave-field synthesis consists of 3 building blocks per loudspeaker: filter, delay and
gain. The filter used in our implementation was a finite impulse response to easily ac-
commodate the 3dB per octave slope. For each loudspeaker the filter is the same, thus
the input audio signal only needs be filtered once. The delay block is implemented via a
delay line using a circular buffer. The gain is evaluated and applied for each loudspeaker
using its coordinates as well as the current source and listener positions.

The plugin is implemented in C++ using the JUCE framework. It offers a GUI where
all setup and wave-field synthesis parameters can be controlled by the user. Controls can


https://youtu.be/cxPJKh8mF_E
https://youtu.be/57Pwy940GIA
http://www.matthiaskronlachner.com/?p=1910
http://www.matthiaskronlachner.com/?p=1910
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also be automated, or sent and received over OSC. To ensure real-time safety the plugin
decouples resource-consuming tasks from the audio processing.

Due to the access restrictions in the ongoing Covid-19 pandemic the plugin was only
tested using a binaural rendering plugin and impulse responses from previous work. The
instructions how and where to obtain the plugin and its binaural test environment can be
found in this paper and in the respective code repository?.

Zhttps://git.iem.at/audioplugins/iem-wfs/
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