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Abstract

Artificial reverberation in Ambisonics often utilizes convolution to achieve a
convincing effect. This requires efficient implementation and computational effort
when Ambisonics is used in higher orders and impulse responses are long. The
goal of this project was to explore the implementation and customization of a feed-
back delay network to produce convincing and natural reverberation while using a
fraction of used computational load, compared to convolution reverberation.



Matthias Blochberger: FDN reverberation in Ambisonics 3

Contents

1 Introduction 4

2 Feedback Delay Networks 4

2.1 Stability of FDNs - Unitary feedback matrix . . . . . . . . . . . . . . . . 5

2.2 Time-variant FDN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Pre-calculations in Matlab . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Using the FDN in an Ambisonics system . . . . . . . . . . . . . . . . . 10

3 Implementation 11

3.1 fdn_gui.pd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 fdn_36_36.pd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 matr_calc.pd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4 shelf_bank.pd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.5 calc_gain.pd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.6 del_36.pd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.7 reflections.pd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.8 rot1/2/3.pd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Conclusion and outlook 19



Matthias Blochberger: FDN reverberation in Ambisonics 4

1 Introduction

The motivation for this project was to explore the options of using a Feedback Delay
Network (FDN) to implement well-sounding and efficient reverberation for Ambisonics.
Implementations using convolution are common, but with long impulse responses and
higher-order Ambisonics (e.g. 5th order: 36 channels) its need for processing power can
can pose an obstacle. FDNs are an common way to simulate reverberation in audio-signal
processing in single-channel and stereo applications. Stautner and Puckette [SP82] first
proposed the basic form of the system on which this project is based on. Section 2
provides a general introduction to FDNs. Further Sebastian J. Schlecht and Emanuel A.
P. Habets [SH15] proposed a way to make the FDN time-variable. This general propo-
sition has been adapted to allow a pure real-valued implementation in the programming
language Pure data.

The main focus of the project was applying an FDN to Ambisonics and extending the
functionality and parametrization of the reverberation effect far enough to make it useful
as a plug in. During literature study for this project, there appeared to be no larger
or substantial work applicable to systems with more channels, especially targeted to
massive multi-channel surround/3D audio. An FDN implemented by Daniel Rudrich for
a performance by Al Di Meola at the Institute of Electronic Music and Acoustics of the
University of Music and Performing Arts Graz [RZF16] was taken as an inspiration. The
multi-channel structure is outlined in section 2.4. The practical implementation of the
reverberation effect is explained in section 3.

2 Feedback Delay Networks

In 1982 John Stautner and Miller Puckette proposed a form of artificial reverberation
which would later be commonly named feedback delay network.

y[n] = x[n−m] + a · y[n−m] (1)

represents a recursive comb filter. Replacing the m-sample delay by an array of delay
lines of different lengths and the feedback gain a by a feedback matrix A gives us the
general structure of the Stautner-Puckette FDN.

In time domain the entire FDN is given by the relations

y[n] = cT s[n] + dx[n],

s[n+ m] = As[n] + bx[n]
(2)

where m a vector of different delay lengths used by the network, m1 to mN . Figure 1
show the structure of such a network.
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Figure 1 – Basic feedback delay network

2.1 Stability of FDNs - Unitary feedback matrix

The general structure introduced in section 2 is the rudimentary basis of an FDN. As
figure 2 shows, the insertion of filters provides attenuation which achieves frequency-
dependent reverberation times. The energy at the inputs and the outputs of the matrix
has to be preserved, otherwise the effect of the attenuation is undetermined. The energy
preservation ensures a stable system and is described by a unitary matrix A ∈ CN×N

[SH15] or an orthogonal real-valued matrix A ∈ RN×N , so that AHA = I.
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Figure 2 – Feedback delay network with filters in the loop
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2.2 Time-variant FDN

FDN reverberation can yield an undesirable metallic tin-can-like sound. Sebastian J.
Schlecht proposed time-varying feedback matrices as a solution and reached satisfying
improvements [SH15]. The time variation with a particular parametrization is achieved
by updating the feedback matrix with an update matrix

A[n] = A[n− 1]R,
A[n] = A[0]R[n].

(3)

To ensure stability, this matrix must to be unitary/orthogonal. The eigenvalue decom-
position of R provides control of the time variation,

A[n] = A[0]UΛ[n]UH . (4)

Λ[n] is the diagonal matrix of the eigenvalues diag([λ1[n], ..., λN [n]]). U is an arbi-
trary unitary matrix. Modulating these eigenvalues λ1[n], ..., λN [n] achieves the time
variation. The eigenvalues have an absolute value of 1, due to the requirement of a uni-
tary/orthogonal feedback matrix. This leaves the phases of the eigenvalues as a degree
of freedom and hereby as the only way to modulate.
This method can be simplified by leaving out the initial feedback matrix A[0] and recal-
culating the new feedback matrix from variable eigenvalues:

A[n] = UΛ[n]UH (5)

Such a time variation had to be adapted to allow implementation in the target graphical
programming language Pure data, because it only allows processing with real values.

The eigenvalue decomposition can be written as summation of the products of the
complex eigenvectors vi and eigenvalues λi.

A[n] =
N∑
i=1

viλi[n]vHi (6)

Considering the required limitation to real numbers and the fact that audio signals are real
signals, the goal is to represent the real-valued feedback matrix resulting from complex
conjugate eigenvalue pairs and eigenvector pairs by something purely real-valued. We
may formulate this for a single complex-valued pair as

Â = v1λvH1 + v2λ
∗vH2 (7)

with the real and imaginary parts

v1 = a + ib,
v2 = a− ib,

(8)

with a and b being real-valued linear independent column vectors with a norm ‖a‖2 +
‖b‖2 = 1. Rewriting Eq. (7) yields

Â = (a + ib)λ(a + ib)H + (a− ib)λ∗(a− ib)H , (9)
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Â = (a + ib)(aT − ibT )λ+ (a− ib)(aT + ibT )λ∗, (10)

and by expanding the products, we get

Â = (aaT − iabT + ibaT + bbT )λ+ (aaT + iabT − ibaT + bbT )λ∗ (11)

Inserting the real and imaginary components of the eigenvalue pair λ = 1eiω = cos(ω)−
i sin(ω) we get

Â = (aaT − iabT + ibaT + bbT )(cos(ω)− i sin(ω))+

(aaT + iabT − ibaT + bbT )(cos(ω) + i sin(ω)).
(12)

After expansion, many terms cancel in the above expression and we obtain

Â = 2(aaT + bbT ) cos(ω) + 2(baT − abT ) sin(ω). (13)

We define rank-one vector products as

aaT =: B,

bbT =: C,

abT =: D,

baT = DT .

(14)

This leaves us with a symmetric part 2(B+C) cos(ω) and an antisymmetric part 2(DT−
D) sin(ω). The symmetric part represents the real component of the eigenvalue pair,
the antisymmetric represents the imaginary component. Hereby we get one pair of
eigenvalues on the unit circle with the phase ω from the positive real axis on the complex
plane (Figure 3):

Â = 2(B + C) cos(ω) + 2(DT −D) sin(ω) (15)

Putting this back together to the form of Eq. (6) we get an N × N feedback matrix
for N

2
eigenvalue pairs which are defined by the phases ωi and the real-valued rank-one

matrices Bi, Ci and Di corresponding to every complex conjugate eigenvector pair

A[n] =
N∑
i=1

2(Bi + Ci) cos(ωi[n]) + 2(DT
i −Di) sin(ωi[n]). (16)
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Figure 3 – A pair of complex conjugate eigenvalues on the unit circle
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Figure 4 – Polar plot of the eigenvalues of a unitary 36× 36 matrix
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The N ×N matrices Bi, Ci and Di are real-valued and constant for each eigenvalue λi.
They are by definition (Eq. (14)) products of the arbitrary vectors ai and bi which can for
example be randomly generated but must be orthogonal. Specifically for the practical
implementation it is helpful to store the results for the expressions 2(Bi + Ci) and
2(DT

i −Di) in configuration files. Time variation of the feedback matrix is implemented
by variation of the phases of the eigenvalue pairs with low-frequency oscillators for each
eigenvalue pair.

2.3 Pre-calculations in Matlab

To take load off the computation and to simplify the processing in Pure data, some parts
can be pre-calculated and stored in files. Those items were generated using Matlab to
implement what is explained in section 2.2.

1 n=36;
2 eig_nr =18;
3 A=zeros (36 ,36);
4 M=orth(rand(n,n));
5 BC_n=zeros (36,36, eig_nr);
6 D_n=zeros (36,36, eig_nr);
7 k1=1;

For A with dimensions N × N with N = 36 a orthogonal matrix M with the same
dimensions is randomly generated. The feedback matrix A and the variables to store
the symmetric and antisymmetric parts of the feedback matrices for each of the 18
eigenvalue pairs are initialized.

1 for k=2:2: eig_nr *2
2 a=M(:,k-1);
3 b=M(:,k);
4 a=a/sqrt (2);
5 b=b/sqrt (2);
6 B=a*a.’;
7 C=b*b.’;
8 D=a*b.’;
9 BC_n (1:n,1:n,k1)=B+C;

10 DtD_n (1:n,1:n,k1)=D.’-D;
11 w=pi*k/( eig_nr *2+2);
12 temp =2* BC_n(:,:,k1)*cos(w)+2* DtD_n(:,:,k1)*sin(w);
13 A=A+temp;
14 k1=k1+1;
15 end

Taking two rows or columns from the orthogonal matrix M gives two linear independent
vectors as deemed necessary in equation (8). The vectors are normalized by the square
root of 2 so ‖a‖2 + ‖b‖2 = 1. B, C and D are calculated as defined at equation (14)
as B = aaT , C = bbT and D = abT . The phase ω (w in script) was chosen in
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dependency of the number of eigenvalue pairs to ensure a uniform spread of eigenvalues
on the unit circle. The summation of the partial results in temp yields the feedback
matrix A which was only used for testing purposes and visualization (figure 3) in the
Matlab code. The matrices BC_n and DtD_n are stored in files for the use in the
real-time Pd implementation (section 3).

2.4 Using the FDN in an Ambisonics system

An FDN implemented by Daniel Rudrich for 3D audio live effects in a performance of Al
Di Meola used the output of the delay lines as Ambisonic channels. This concept proved
to be promising in early tests and got adopted.
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Figure 5 – Using the ambisonics channel as inputs and outputs of the delay-lines

This requires the size of the feedback matrix to assume the size N = (Ambisonics-
order+1)2.
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3 Implementation

Pure data is a real-time graphical programming environment for audio and graphical
processing. [Puc16]
It follows an object-oriented approach. Pure data was chosen as a fast and flexible
way of implementation. The graphical interface is relatively intuitive to use in general
and gives the possibility to get working audio effects in a short amount of time. To
mention is the fact that the development of this effect showed some drawbacks, which
are mainly a weak support for coding bigger multi-channel applications and the very
limited possibilities to optimize the algorithms.
Input and output is an ambisonics-encoded audio signal. The Amisonic channels have to
be routed from a DAW to the reverberator. While developing, REAPER was used which
provides an ASIO driver called ReaRoute [rea16] to accommodate in and output signals
to the real-time implementation in Pure Data.

Input N ch.

Delay Feedback
Matrix

N Filters

+

N Delays Early Reflections

Mixer

Output N ch.

N ch.

Figure 6 – Block diagram of the implementation
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Figure 6 gives an overview of the general process trough different subsystems of the
implementation. Parameters of the algorithm are controlled on a graphical user interface.
The project is composed of the main-patch and several sub patches:

fdn_gui.pd

fdn_36_36.pd

matr_calc.pd shelf_bank.pd del_36.pd reflections.pd

rot1.pd rot2.pd rot3.pdcalc_gain.pd

Figure 7 – Pure data patch-hierarchy

3.1 fdn_gui.pd

The patch [fdn_gui ] contains the elements for users to control parameters of the rever-
beration. Values are sent to other patches by [send ] objects.

— Dry-Wet slider (1)
— Button for activation of modulation for feedback matrix (2)
— Decay-time sliders for low, mid and high-band (3)
— Cut-off frequency sliders for bands (4)
— Slider for level of the FDN reverberator (5)
— Pre-delay for FDN reverb in ms (6)
— Rotation for early reflections (7)
— Delays of early reflections in ms (8)
— Levels of the early reflections (9)
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Figure 8 – GUI

3.2 fdn_36_36.pd

The main functionality is implemented in [fdn_36_36 ]. The used matrix operations
are taken from the iemmatrix library for Pd. The structure of this patch is shown in
Figure 6. Thee feedback loop with the delay-lines is realized by using the [delwrite˜]
and [delread˜] objects. The length of the delays in milliseconds are the first 36 prime
numbers starting at 11 to prevent resonances.

3.3 matr_calc.pd

The feedback matrix is calculated in [matr_calc] as explained in section 2.2 by

A[n] =
N∑
i=1

2(Bi + Ci) cos(ωi[n]) + 2(DT
i −Di) sin(ωi[n]).

B,C,D are generated from random orthogonal vectors as explained in section 2.2 and
stored as 2(Bi +Ci) and 2(DT

i −Di) in *.mtx files by the aforementioned Matlab code.



Matthias Blochberger: FDN reverberation in Ambisonics 14

pd matr_combine

s matr_1

1  r w_0 0.15

cos sin

1  

expr $f2*$f3 +

$f4*sin($f1*$f5)

mtx

matrices/AbAbt/AbAbt_

1.mtx

mtx

matrices/AB/AB_1.mtx

Figure 9 – Calculating the feedback matrix for one eigenvalue

For every eigenvalue, a component of the feedback matrix is calculated. The sum of these
components yields the feedback matrix A. This happens every 30 milliseconds. (File
names in figure 9: 2(Bi +Ci) stored in AB_i.mtx, 2(DT

i −Di) stored in AbAbt_i.mtx)

3.4 shelf_bank.pd

A 3-band filter is part of each channel in the feedback loop. The bank of filters for
each channel in implemented in [shelf_bank] and uses the [hml_shelf˜] objects from
the iemlib library.

inlet~ inlet~ inlet~inlet~ inlet~inlet~

outlet~
outlet~ outlet~outlet~ outlet~outlet~

iemlib/hml_shelf~

11 

r lowlvl

r midlvl

r highlvl

r lowfq

r highfq

loadbang

iemlib/hml_shelf~

r lowlvl

r midlvl

r highlvl

r lowfq

r highfq

loadbang

iemlib/hml_shelf~

r lowlvl

r midlvl

r highlvl

r lowfq

r highfq

loadbang

iemlib/hml_shelf~

r lowlvl

r midlvl

r highlvl

r lowfq

r highfq

loadbang

iemlib/hml_shelf~

calc_gain

r lowlvl

r midlvl

r highlvl

r lowfq

r highfq

loadbang

iemlib/hml_shelf~

r lowlvl

r midlvl

r highlvl

r lowfq

13 17 19 23 

calc_gain calc_gain calc_gain calc_gain calc_gain

Figure 10 – Each of the N channels is attenuated by a 3-band shelving-filter

3.5 calc_gain.pd

The gain values for the bands of the shelving filters in shelf_bank.pd are derived from
a desired decay curve called y in the following explanation. For a delay line with delay
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tm and filter with gain gm the decay curve y at time t is

y = g
t

tm
m .

The desired decay curve can also be described with

y = 10
− 60

20
· t
t60

where t60 is the desired decay time (RT60). Solving for gm gives us the gain for the
filter

g
t

tm
m = 10

−3 t
t60 ,

log10(gm) · t
tm

= −3
t

t60
,

log10(gm) = −3
tm
t60
,

gm = 10
−3 tm

t60 ,

gm,dB = −30
tm
t60
.

Implementation:

inlet

outlet

inlet

outlet

inlet inlet

outlet

clip clip clip

0  

loadbang

-90

expr (-30*$f2)/($f1*1000)

expr (-30*$f2)/($f1*1000)

expr (-30*$f2)/($f1*1000)

Figure 11 – The Pd patch [calc_gain] calculates the gain in dB for each band per delay
line.
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Figure 12 to Figure 15 show the Energy Decay Reliefs for selected RT60 values ranging
from 1 to 10 seconds.

Figure 12 – EDR for RT60 = 1s

Figure 13 – EDR for RT60 = 2s
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Figure 14 – EDR for RT60 = 5s

Figure 15 – EDR for RT60 = 10s
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3.6 del_36.pd

The [del_36 ] patch is a uniform set of 36 delays for each channel. It is used as a delay
of the FDN reverb. Each channel uses the [delwrite˜] and [delread˜] objects.

delread~

del_36_1

10

r deltime_36

outlet~

inlet

s deltime_36

inlet~

*~ 1e-006

delwrite~ del_36_1 500

Figure 16 – Delay for one channel

3.7 reflections.pd

For an impulse response resembling the characteristics of a real room, the option of
adding early reflections is given. The relative rotation, level and delay in milliseconds
can be changed via the GUI. This implementation has 3 reflections.

3.8 rot1/2/3.pd

The rotation and delay of the ambisonics signal of the reflections is processed in patches
rot1.pd, rot2.pd and rot3.pd. Rotation of the signal around the x,y and z axis is done
by calculating the rotation-matrix for the ambisonic signal from desired rotation angles
(figure 17). The delay is achieved as explained in section 3.6.
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inletinlet inletinlet inlet

s deltime_1

mtx graef_t10_60.mtx

mtx_slice 2 1 3 end

mtx_rotzyz

mtx_cart2sph

mtx_transpose

mtx_*

loadbang

mtx_slice 2 1 3 end

mtx_cart2sph

mtx_transpose

mtx_* 1

mtx_size

/  

mtx_*

0

deg2rad

0

deg2rad

114

deg2rad

pack f f f

t b f t b f

z y z

12.5664 $1

4pi/L

mtx_spherical_harmonics 5

mtx_spherical_harmonics 5

mtx_* 1

Figure 17 – Calculating the rotation matrix.

4 Conclusion and outlook

The general consensus after a listening session at IEM was that the quality of the
reverberation achieved here is higher than expected. The conduction of proper listening
tests was out of scope for this work, so it remains at least to report the impressions
by expert listeners when presenting the algorithm. As expected, the number of delay
lines contributes the most in terms of sound quality. The usage of Ambisonic channels
as inputs of the FDN gives a very "organic" reverberation. Adding the modulation
of the feedback matrix minimizes the possibility of unwanted resonances, which can
be perceived as a "tin-can-like" reverberation. This effect is more prominent in FDNs
with a lower number of channels. An optimized implementation in C/C++ as a VST
plug in would be promising, considering that high performance is already achieved by
the Pd prototype. This would also give the possibilities of a per-sample calculation
of the feedback matrix and better parametrization/calculation of properties such as
accurately controlled frequency-dependent reverberation time and the addition of more
early reflections, maybe generically rendered.
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