

Lecture 1 - Intro to Sonification

Visda Goudarzi goudarzi@iem.at

- Organizational (important dates, topics, assignments, grading system)
- Your background and interests (audio programming languages, sonification experience)
- Intro to sonification

- 02.10.13 Intro to Sonification
- 09.10.13 Auditory Scene Analysis
- 16.10.13 Data and programs
- 23.10.13 Audification, Auditory Icons and Earcons
- 30.10.13 Parameter Mapping
- 06.11.13 Model-Based Sonification
- 13.11.13 Interactive Sonification
- 20.11.13 Aesthetics and Computer Music
- 27.11.13 Project plan Feedback
- 04.12.13 Sonification Hackathon
- 15.01.14 Project presentation and Installation

The grading criteria:

creativity, execution, and presentation

- Assignments (60%)
- Final Project and Installation (40%)
- Papers and Research (extra 20%)

For next week:

Download Super Collider from: <u>http://www.supercollider.sourceforge.net</u>

Read at least one of these papers and be ready to talk about them in the class:

[1] T. Hermann, A.V. Nehls, F. Eitel, T. Barri, and M. Gammel, "Tweetscapes - realtime sonification of twitter data streams for radio broadcasting," in Proc. of the International Confer- ence on Auditory Display, 2012.

[2] D. Pirro`, A. Wankhammer, P. Schwingenschuh, A. Sontac- chi, and R. Ho "Idrich, ''Acoustic interface for tremor anal- ysis,'' in Proc. of the International Conference on Auditory Display, 2012.

[3] R.McGee, J.Dickinson, and G.Legrady, "Voice of sisyphus: An image sonification

stethoscope

geiger counter

sonar

Why sound is used spontaneously?

- tradition of listening to the data (e.g. medicine, mechanics)
- technological reason:
 - no other measurement device is available
 - sound is a by-product of measurement
 - domain science and sound use the same technological aids
- monitoring processes

Advantages of Sonification

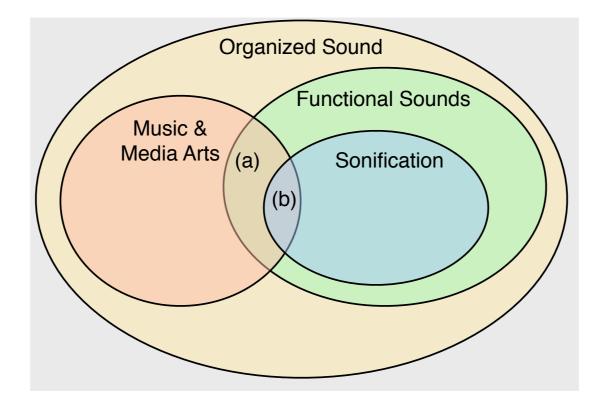
- advantages of our auditory perception:
 - high temporal resolution
 - large frequency range
 - omnidirectional
 - parallel auditory streams, backgrounding
- eye-free conditions (e.g. sight-impaired)
- useful when visual information overload

Limiting Factors of Sonification

- sound parameters lack strict orthogonality
- individual differences and necessity of training (perceptual and cognitive abilities of the users)
- aesthetics: sound can easily get annoying
- longer history of visualization
- user's cultural bias

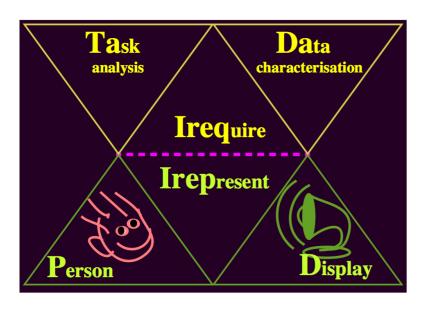
A taxonomy of intended sonification uses

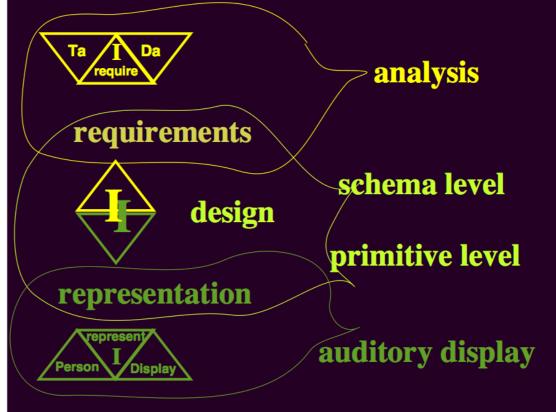
- presentation: auditory demonstration of finished results
- exploration: interaction with the data; heuristic for generating hypotheses (because of high temporal resolution of auditory, pattern detection and anomalies)
- analysis: requires well-understood, reliable tools for detecting specific phenomena (e.g. trend identification, data structure or pattern recognition)
- monitoring: processes that benefit from continuous monitoring by observer (industrial production, hospitals), any sudden change is hearable
- pedagogy: learning and understanding structures and patterns in data for non visual students or visually impaired
- artistic uses: sonification-based sound art and installations

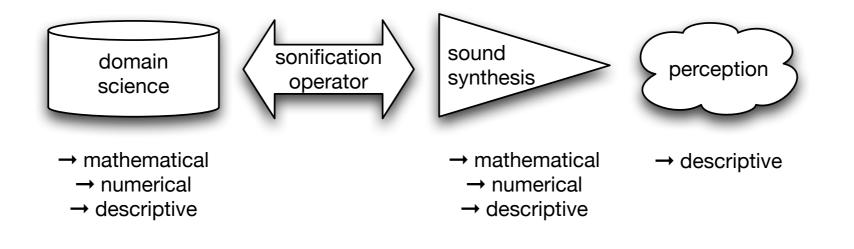

http://heavylistening.com/tweetscapes/

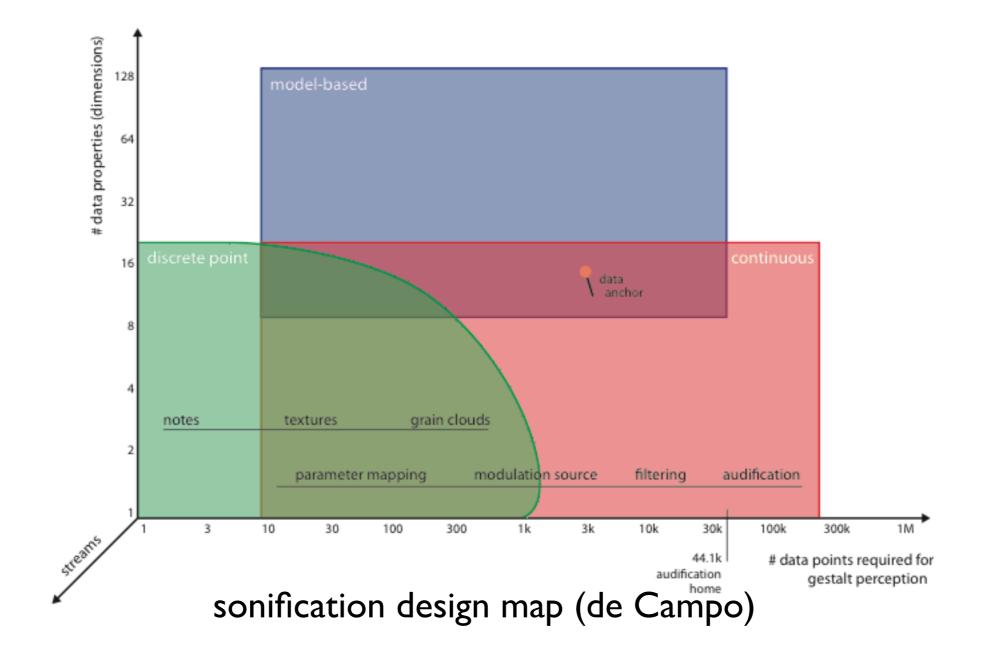
sonification is the use of non-speech audio to convey information [Kramer 99]

sonification is the data-dependent generation of sound, if the transformation is systematic, objective and reproducible, so that it can be used as scientific method. [Hermann 09]



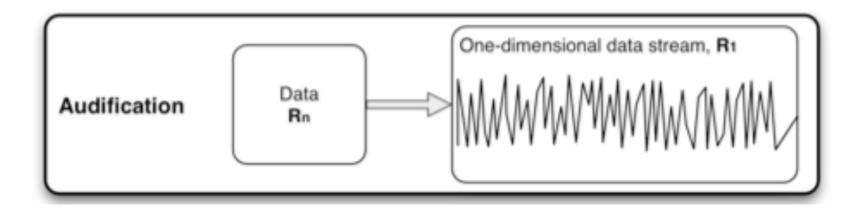

- I. research question hypothesis and prediction
- 2. data description (e.g. using TADA)
- 3. chosing a sonification method (e.g. using SDSM)
- 4. how could it sound like? (using methaphors)
- 5. describing the sonification designs
- 6. sound synthesis, transfer function, sonification operator
- 7. discussion: what is hearable? how does it sound like? does it need any filtering, scaling, ...
- 8. gathering results, hypothesis
- 9. evaluations (using the sonification tool, how fast and how efficient can the user solve the problems? with how much training?) : clarity, efficiency, intuitivity, technical effort, ...


Sonification - Sound of Science VU, WS 2013 TADA: Task and Data Analysis Stephen Barrass



 $\mathring{\mathcal{S}}:\mathbb{D}\to\mathring{\mathbb{Y}}$

sonification operator is a function from the data space to the sound space

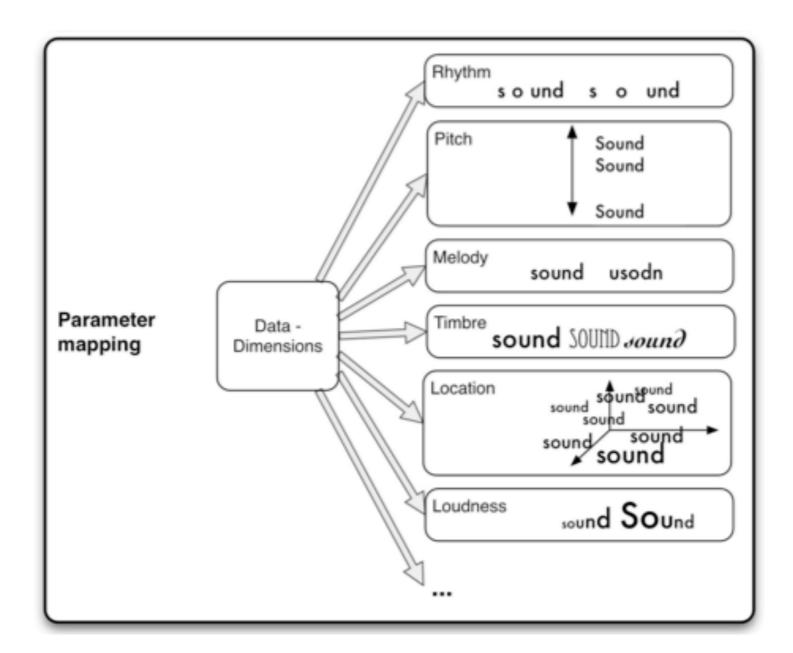


sonification techniques and approaches

Audification is the most prototypical method of direct sonification, whereby waveforms of periodic data are directly translated into sound. [Kramer]

example: medicine

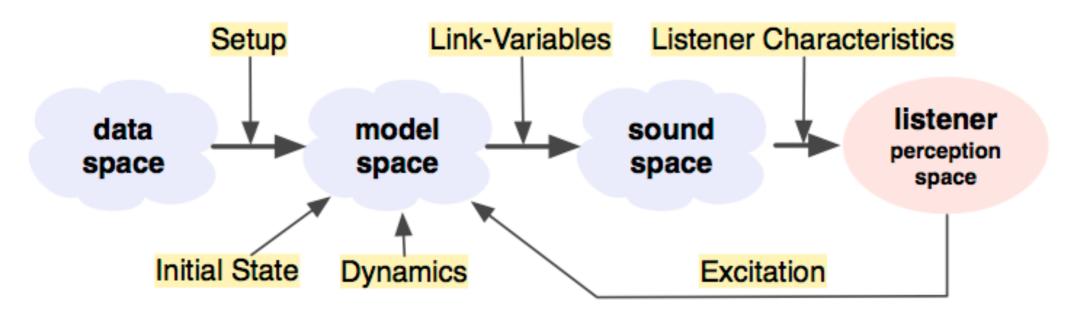
parkinson


essential

psychogenic

sonification techniques and approaches

example: sports, movement sonification



http://tangibleauditoryinterfaces.de/ index.php/tai-applications/ jugglingsounds/

sonification techniques and approaches

References

The Sonification Handbook. Edited by Thomas Hermann, Andy Hunt, John G. Neuhoff Logos Publishing House, Berlin 2011, 586 pages, 1. edition (11/2011). ISBN 978-3-8325-2819-5

ONLINE!: <u>http://sonification.de/handbook/</u>

International Conference on Auditory Display – Papers: <u>http://icad.org/biblio</u>

Kramer, Gregory, ed. (1994). Auditory Display: Sonification, Audification, and Auditory Interfaces. Santa Fe Institute Studies in the Sciences of Complexity. Proceedings Volume XVIII. Reading, MA: Addison-Wesley. ISBN 0-201-62603-9.

Das geschulte Ohr . Eine Kulturgeschichte der Sonifikation Hrsg. v. Andi Schoon u. Axel Volmar. Verlag transcript. 2012. ISBN 978-3-8376-2049-8

[TADA] Barrass, St., Auditory Information Design, PhD thesis, The Australian National University, 1997.

[SDSM] De Campo, A., Science by Ear. An interdisciplinary Approach to Sonifying Scientific Data. Dissertation. Institute of Electronic Music and Acoustics, University of Music and Dramatic Arts, Graz, 2009.

[Sonification Operator] Vogt, K., Höldrich, R., Translating Sonifications, J. Audio Eng. Soc., Vol. 60, No. 11, pp.