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Abstract

In this seminar paper, two di�erent approaches concerning single channel noise

suppression are investigated: spectral subtraction and gammatone �lterbank sub-

band processing. Thereby, the theory behind both methods as well as the im-

portant aspects concerning the implementation will be explained. Furthermore,

a short summary of the acoustically evaluated performance is given to verify the

functionality of both algorithms.
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1 Introduction

Speech noise suppression is a traditional and broadly studied research �eld. This is
due to the vast amount of recorded and transferred speech being used in all kinds
of environments, the varying quality of the recording and transferring media, and the
importance of speech communication in general. Typical applications of speech denoising
include:

• Narrow-band voice communications

• Speech recognition

• Speaker authentication

• Voice-controlled systems

• Speech compression

According to Boll denoising can be carried out by using noise-cancelling microphones,
internal modi�cation of the voice processor algorithms to explicitly compensate for the
noise, or by pre-processor noise reduction. Chen et al. state the following classi�cation
for noise suppression techniques:

• The number of channels available for enhancement; i.e., single channel and multi
channel techniques.

• How the noise mixes with speech; i.e., additive noise, multiplicative noise, and
convolutive noise.

• Statistical relationship between the noise and speech; i.e., uncorrelated or even
independent noise, and correlated noise (such as echo and reverberation).

• How the processing is carried out; i.e., in the time domain or in the frequency
domain.

This seminar paper concentrates on the single channel pre-processing case with uncor-
related additive noise. Both frequency domain frame-based and time domain sample-
by-sample processing have been implemented for comparison. The case considered here
is quite typical, for instance, in mobile communications; there's only one microphone
available and the main noise sources are the environment and the transmission channel,
which are independent from the speech itself.

The denoising methods presented are based on the classical theories of (Power) Spectral
Subtraction and Wiener �ltering. These basic methods show well the duality of noise
reduction and speech distortion. When denoising a noisy signal, more or less distortion is
always added to the output signal. With noise suppression being too harsh - especially in
low SNR situations - the distortions or residual noise can be perceptually more annoying
than the initial noise or, in the case of algorithm pre-processing, deteriorate the algorithm
performance.
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2 Spectral Subtraction Method

Spectral subtraction is a method to retrieve the pure signal spectrumX(f) by subtracting
a noise spectrum estimate N(f) from the noisy signal spectrum Y (f). The following
block diagramm allows a quick overview of the processing steps.

Figure 1: Overview of spectral subtraction method (see *9)

In the following sections, the di�erent stages leading to a suppressed-noise output signal
will be explained in detail.

2.1 Estimation of the noise spectrum

For the estimation of the noise spectrum, only the time periods, when the desired signal is
absent, are used. It is assumed, that the background noise is a stationary due to a slowly
varying process. To di�erentiate between active and inactive periods, the noisy signal
is divided into short consecutive time frames. The calculated energy of the respective
time frames is then used as a distinctive feature. With de�ning a certain threshold, all
time frames with lower energy are regarded as pure noise, those with locally increased
energy are considered carrying noise and the desired signal. During periods exhibiting
desired signal activity, the noise estimation is 'frozen' and the last noise update is kept
as an estimation for subsequent signal periods. Before being subtracted from the noisy
signal, the noise estimation spectrum is smoothed, i.e. the estimated noise spectrum of
preceding time frames are taken into account.
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2.2 Comfort noise

Spectral subtraction may not yield negative values for the estimate of the clean, denoised
signal. In order to prevent negative values especially at low SNR, a mapping function P
has to be employed:

P [X̂(f)] =

{
|X̂(f)| if |X̂(f)| > β · |Y (f)|
β · |Y (f)| if |X̂(f)| 5 β · |Y (f)|

(1)

A minimal noise �oor β · |Y (f)| may be kept as "`comfort"' noise.

2.3 Spectral subtraction

The equation of the generalized spectral subtraction rule is:

|X̂(f)|b = |Y (f)|b − α · |N(f)|b (2)

Its coe�cient α is the (over)subtraction factor, the signi�cance of which will be explained
in subsection 2.6.1. The parameter b determines the spectral power of the subtraction.
Setting b to the value 1, the equation turns into magnitude spectral subtraction. If b = 2,
the power spectrum subtraction rule is applied. Both methods are similar, however, they
result in slightly di�erent performances.

2.4 Spectral subtraction as �lter function

Instead of subtracting spectral magnitudes, spectral subtraction can be expressed as a
�ltering of the noisy signal.

|X̂(f)|b = |Y (f)|b − α · |N(f)|b

|X̂(f)|b = |H(f)| · |Y (f)|b

with H(f) = 1− |N(f)|b

|Y (f)|b
(3)

H(f) is therefore the frequency response of the spectral subtraction �lter. It is a zero
phase �lter, with its magnitude response being within the boundaries of [0,1]. Taking the
mapping of subsection 2.2 into account, its range ofH(f) diminishes to [β,1]. This prop-
erty allows another perspective on noise suppression by spectral subtraction: Spectral
subtraction is equivalent to a gain function, which attenuates the signal corresponding to
its current energy level. To retrieve the time domain signal x̂(t),the magnitude spectrum
|X̂(f)| is combined with the phase of the noisy signal before being transformed via the
inverse discrete Fourier transform.

x̂(t) =
∑

0≤k≤N−1

|X(k)| · ejΘ(k) · e−
j2π
N k ·m (4)
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This restoration is based on the assumption, that the magnitude distortion rather than
phase distortion is responsible for the audible noise.

2.5 Artefacts in Spectral Subtraction

The are two main reasons for the annoying distortions:

• inaccuracy of noise estimation assumptions

• nonlinear properties of the mapping

The observed signal distortions can be described as a metallic sound and is often referred
to as "`musical noise"'. For a short period of time, narrow bands of frequencies have a
small peak in the signal spectrum. If those bands are in the vicinity of the signal, they
are masked and therefore inaudible. However, if components around the noise-induced
short peak are not present, the outcome is disturbing.

Figure 2: Musical noise (see *1) p.249)

Especially at lower signal-to-noise ratios, simple implementations of the spectral sub-
traction can lead to even worse signal qualities than the noisy input.

2.6 Counteractive measures

2.6.1 Oversubtraction

One e�ective counteractive measure against musical noise is oversubtraction. In this
case, the (over)subtraction factor α from equation 2 is set to values higher than 1.
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Thus, more than the estimated noise is subtracted from the signal. The bene�t is to
decrease the musical noise as the narrow-band peaks are more likely to fall below the
lower limit β · |Y (f)|. Especially in the case of low SNR, the oversubtraction method is
necessary to achieve satisfactory results. Common values for α are between 1 and 2 in
the magnitude domain and in the range of 1 and 4 in the power domain, respectively.

Figure 3: Di�erent values for α depending on the SNR of the power spectra.

2.6.2 Post processing

As stated before, musical noise is a distortion caused by short narrow-band peaks in the
spectral domain isolated from the wanted signal. These features can be used to identify
and remove a big part of the annoying distortions. Two major properties have to be
ful�lled in order to identify musical noise in the frequency domain. First, for musical
noise the number of consecutive bins with magnitude above the threshold is usually
smaller than a certain maximum, depending on the sampling rate and the block size
of the time frames. Second, all those values stay below a certain level. Only if both
criteria are met, the content of these bins is regarded as musical noise. To suppress this,
an exception is applied to the noise-suppression rule. The respective components are
attenuated with β, the lower limit of the gain function. The following �gure illustrates
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the process.

Figure 4: Post processing to identify and delete musical noise (see *1) p.252)

2.7 Summary on Spectral Subtraction

In order to implement a well-working spectral subtraction program, several processing
steps have to be considered. As discussed in previous sections, noise estimation is
necessary to distinguish between periods of pure noise and periods of noisy signal. A
mapping function is introduced to prevent negative values in the signal spectrum esti-
mate. Moreover, counteractive measures have to be attached in order to decrease the
disturbance caused by musical noise. Finally, the spectral estimate is combined with the
original phase and the desired signal can be calculated. The di�erent processing steps
are illustrated in detail in the following block diagram.
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Figure 5: Spectral subtraction in detail

3 Gammatone Filterbank Subband Method

The second approach to the noise suppression problem uses a special �lterbank decom-
position on the input and operates in the time domain in sample-by-sample basis for each
of the subband signals. Noise and speech detection is done separately in each subband,
which allows more �ne-grained isolation of the noise sections in the time-frequency plane
in comparison to a global speech activity controlled estimation.

3.1 Gammatone �lters

The �lterbank used for the subband decomposition is a so called Gammatone �lterbank
or more speci�cally an Equivalent Rectangular Bandwidth (ERB) �lterbank based on
Gammatone �lters. ERB is a �lter width measure based on the psychoacoustic properties
of hearing. Gammatone �lters are low-order �lters simulating the frequency response of
the di�erent sections of the cochlea in the inner ear. Gammatone �lter decomposition
results in a more useful frequency resolution when compared to a DFT approach, where
the accuracy is too high in the high frequencies or too low in the low frequencies,
depending on the overall DFT resolution. A more detailed description of Gammatone
�lterbanks can be found in the technical report by Slaney.

Figure 6 shows the magnitude responses of the gammatone �lters of a 24-band ERB
�lterbank. The �gure displays the high amount of crosstalk between the �lters in com-
parison to traditional frequency selective �lters. This corresponds to the behavior of the
inner ear, where a relatively broad area of the cochlea is excited by a narrowband sound,
but the excitation is most prominent at the section best tuned to the particular frequen-
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cies of the input. Gammatone �lters simulate approximately also the simultaneous (i.e.
frequency-wise) masking phenomenon of the ear. When moving away from the �lter
center frequency, the attenuation increases only by the amount which is needed for the
neighboring �lters to mask the signal at their bands. This is advantageous in speech
denoising as less denoising, and hence less added distortion, is applied for the suppression
of audible noise. This minimization of the manipulation applied to the signal might be
advantageous in reducing annoying artifacts of noise suppression.

Figure 6: Magnitude response of a 24-band Gammatone �lterbank.

3.2 Estimation of the noise

Before estimating the noise level in each subband, a power envelope estimation is applied
by squaring and average-�ltering the signal. Similar to the approach in section 2.1 a
threshold level is set to each of the subband power envelope curves so that 70 percent
of the envelope values stay under the threshold. This is based on the facts that the
speech is assumed to have subband-wise larger instantaneous energy than the noise, and
that the majority of a speech signal consists of pauses between syllables, words, and
sentences. The estimated noise level is then calculated as described in section 2.1.

3.3 Generalized spectral subtraction

The noise attenuation is implemented with the so called generalized spectral subtraction
method described in the paper by Virag. The method uses the a posteriori signal-to-noise
ratio

SNRpost =
|Y |2

|N̂ |2
(5)
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with Y the noisy signal power and N̂ the estimated noise power, to calculate a weighting
function G for noise attenuation. The function gets values 0 6 G 6 1 ranging from full
attenuation to passing the unmodi�ed input through, and is calculated as

G =



(
1− α ·

[
|N̂ |
|Y |

]γ1)γ2

, if

[
|N̂ |
|Y |

]γ1
<

1

α + β(
β ·

[
|N̂ |
|Y |

]γ1)γ2

, otherwise.

(6)

α and β are the oversubtraction factor and the spectral �oor factor as explained in
sections 2.6.1 and 2.2, respectively. The proper choice of the parameters γ1 and γ2

allows choosing between di�erent basic denoising methods as follows

γ1 = 1 and γ2 = 1: Magnitude subtraction
γ1 = 2 and γ2 = 0.5: Power spectral subtraction
γ1 = 2 and γ2 = 1: Wiener �ltering

The method thus gives an easy way to choose between the spectral subtraction ap-
proaches and the Wiener �lter, which is brie�y described in the following section. A
typical noisy signal and the resulting gain function averaged between the subbands are
shown in Figure 7.

Figure 7: Noisy input signal and the resulting gain function.
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3.3.1 Wiener �lter

The Wiener �lter is an adaptive error minimizing �lter. Usually Wiener �lters are imple-
mented as FIR �lters as the feedback of IIR �lters combined with coe�cient adaption
would be a di�cult combination to keep stable. With this being the case, Wiener �lter
output is just a linear convolution

x̂(m) = ĥTy(m), (7)

where x(m) is the output sample at time index m, h the �lter impulse response and
y(m) input signal frame with the same length as the �lter and the �rst element being
the current input sample. An error signal is calculated by subtracting the �lter output
from the desired output

e(m) = x(m)− x̂(m) = x(m)− ĥTy(m). (8)

The �lter coe�cients are chosen to minimize a certain error based cost function, which
can be mean square error (MSE), expectation of the absolute error, or expectation of
some higher power of the absolute error. Choosing MSE as the optimization criteria
results in a unique global minimum in the error surface.

J(ĥ) = E{e2(m)} (9)

The gradient vector of the cost function with regard to the �lter coe�cients equals
−2E{e(m)y(m)}. The error mimimum is found by setting the gradient equal to a zero
vector, which leads to the so called Wiener-Hopf equation

Rĥo = p, (10)

where R = E{y(m)yT (m)} is the correlation matrix of y(m) and p = E{y(m)x(m)}
the cross-correlation vector between y(m) and x(m). Assuming nonsingularity of R the
optimal �lter weigths are

ĥo = R−1p. (11)

A more detailed explanation of the Wiener �lter theory can be found in the book Adaptive
Filter Theory by S. Haykin.

3.4 Summary

Figure 8 shows the block diagram of the implemented system. After denoising the
subbands are simply summed up to form the output signal x̂(m). With the additional
complexity of the subband method, the parameter optimization of the implemented
system is more problematic than with the method described in section 2. The input noise
suppression is somewhat better thanks to the noise estimation controlled individually
in the subbands; there's no perceivable background noise increase during the speech
segments. In addition to the parameters α, β, γ1, γ2, and noise threshold percentage,
the averaging �lter lengths of the input and noise estimate power envelopes seem to
have a big e�ect on the system performance.
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Figure 8: Block diagram of the Gammatone �lterbank denoising system.
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