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1 Introduction

This report investigates the circular radiation pattern of a variable curved line source, measured
during the laboratory

”
Acoustic Holography and Holophony“. The 3D-printed small-size variable

curved line source, designed by Lukas Gölles and fabricated by the Institute of Electronic Music
and Acoustics, was chosen as the device under test. The line array (LA) consists of eight single
loudspeaker enclosures, measured in four configurations. The different curvatures aim for coverage
designs with specific distance-dependent sound pressure level (SPL) descents. In nearly anechoic
conditions for high frequencies, the individual loudspeakers of the LA are measured with 10◦ spatial
resolution in the azimuth and zenith orientation, respectively. The measurement at a medial radius
of 0.75m corresponded to a near-field sampling. Subsequently, the spatial resolution was increased
by interpolating with circular harmonics, and the near-field results were geometrically extrapolated
to the far field to investigate the SPL decay per distance.
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2 Methods & Experimental Setup

2.1 System Identification

Any electrical or acoustical time-invariant system can be determined by its excitation response with a
Dirac unit pulse δ[n]. This response is called the impulse response (IR). Therefore, measuring IRs is a
common task in audio signal processing. As a perfect Dirac unit pulse can not be perfectly reproduced
with a loudspeaker, the exponential sweep (ES) is used as an excitation signal in the current work
due to several advantages. The ES is gainful because of its low crest factor and the possibility of
suppressing any harmonic distortion. [MBL07].

2.1.1 Impulse Response

In order to measure the IR of any linear time-invariant system, an excitation signal x[n] is generated
in such a way that the signal xinv[n] can be easily determined by inverting the signal. According to
[HCZ09], convolution of the inverted signal and the signal itself leads to a potentially scaled by a
factor C and time-shifted unit pulse δ[n0 − n], such that

N−1∑
l=0

x[l]xinv[n− l] = C δ[n0 − n] . (2.1)

The convolution of the measured signal y[n] and the inverse of the excitation signal will give the scaled
and time-shifted impulse response h[n],

C h[n0 − n] =
N−1∑
l=0

y[l]xinv[n− l] . (2.2)

The IR can also be derived in the frequency domain using the Fourier transformation (FT), where
the convolution becomes multiplication. Applying the FT (F) to the signals and obtaining h[n] by
calculating the inverse FT (F−1) as

h[n] = F−1

{
F{y[n]}
F{x[n]}

}
. (2.3)

2.1.2 Exponential Sweep

In order to derive the exponential sweep (ES), a basic discrete sinus signal can be described as

x[n] = sin(ϕ[n]) , ϕ[n] =

∫ N−1

0
ω[n]dn , (2.4)

where ϕ[n] is the current phase value and N the number of samples. A sinus sweep with exponentially
increasing frequency can be derived using the general exponential ansatz for ω[n]

ω[n] = cebn . (2.5)
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By evaluating the exponential ansatz, from eq. (2.5), with respect to the starting frequency ω0 and
the end frequency ω1 yields to the phase ϕ[n] with its constants c and b

c = ω0 , b =
1

N − 1
ln

(
ω1

ω0

)
. (2.6)

Therefore, x[n] can be calculated by evaluating the sinusiod with the phase φ[n] that starts with 0 as

x[n] = sin
[c
b

(
eb·n − 1

)]
. (2.7)

In order to also end the exponential sweep with zero phase, an optimal starting frequency was calcu-
lated as presented in [ZG22]. By having an exemplary fs = 48 kHz and a sweep length of N = 96000
samples, a starting frequency of f0 = 19.993Hz is calculated. The resulting normalized sweep in fre-
quency/time representation and the convolution with its inverse are depicted in Fig. 2.1 and Fig. 2.2.

Figure 2.1: exponential sweep Figure 2.2: convolution of x[n] and xinv[n]

2.2 Experimental Setup

Four different LA designs were investigated, where configuration (1) aims for a decay of 0 dB per
doubling of the distance (dod). Configurations (2) and (3) are designed for 1.5 dB and 3 dB per dod.
The last configuration (4) was just a straight array. The exact design angles are shown in Tab. 2.1.

Enclosure number Config. (1) Config. (2) Config. (3) Config. (4)
(From top to bottom) (0dB/dod) (-1.5dB/dod) (-3dB/dod) Straight Array

Array tilt angle 6.1◦ 6.1◦ 6.1◦ 6.1◦

1 0◦ 0◦ 0◦ 0◦

2 0◦ 0◦ 1◦ 0◦

3 0◦ 1◦ 1◦ 0◦

4 0◦ 0◦ 1◦ 0◦

5 1◦ 1◦ 1◦ 0◦

6 1◦ 1◦ 2◦ 0◦

7 2◦ 3◦ 2◦ 0◦

8 10◦ 6◦ 3◦ 0◦

Accumulated 20.1◦ 18.1◦ 17.1◦ 6.1◦

Table 2.1: Design angles of the three configurations

For the measurement, 18 equally spaced NTI M2230 pressure microphones were mounted on a fixed
arc-shaped suspension, resulting in observation angles from 5◦ − 175◦ in 10◦ steps at a radius of
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Figure 2.3: Experimental setup in configuration (1), with 0 dB per dod

rm = 0.75m from the origin. Fig. 2.3 shows the measurement environment during a measurement.
The eight vertically arranged enclosures of height hls = 0.082m are centered around the origin and
mounted on a loudspeaker stand with a curved brace. The suspension was attached to an automatic
rotation table to measure a full sphere around the array. A Pure Data patch performed all the
measurements and controlled the rotating table. For the horizontal discretization, the same angle step
of 10◦ was chosen, which resulted in 36 measurement runs. Having 18 zenith angles ϑ, 36 azimuth
angles φ, and eight loudspeakers resulting in a total of 18 × 36 × 8 = 5184 measured IRs. Fig. 2.4
sketches the dimensions of the experimental setup in LA-configuration (1) in a side and a top view.
For simplification in mounting, the array tilt angle, indicated in table 2.1 was not realized in the
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Figure 2.4: Sketch of the experimental setup in configuration (1). Left: side view. Right: top view

measured configuration. In hindsight, this angle was virtually applied by evaluating the polar pattern
in section 2.3.3 by changing the microphone positions virtually by the array tilt angle.

2.2.1 Measurement Procedure

The Pure Data patch automatically played back the MES and recorded the microphone signals of
all 18 microphones/zenith angles φ into a single 18-channel .wav-file. After a measuring pass, Pure
Data controlled the rotation table and changed the azimuth angle by φ = 10 ◦, then the next run was
launched. After all 36 azimuth angles φ, the measurement of one LA configuration was finished.
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2.3 Post-Processing

2.3.1 Calculation of the IRs (Sensitivity Correction and Direct Sound Equalization)

The sensitivity mismatch along the 18 microphones is compensated by recording the 1 kHz sine tone
at 94 dB from the SPL calibration tool, the stationary part of each time signal is extracted, a FT
is performed, and then the amplitude offset of each 1 kHz bin is obtained and corrected in the time
domain. A Python script reads all the .wav-files from one configuration and performs a FT of all
channels xφ,ϑ[n] and of the inverse MES xinv[n] as

Xφ,ϑ(e
−iω) = F {xφ,ϑ[n]} and Xinv(e

−iω) = F {xinv[n]} . (2.8)

As described in section 2.1, the deconvolution is applied in the frequency domain as

hφ,ϑ[n] = Re

{
F−1

{
Xφ,ϑ(e

−iω

Xinv(e−iω

}}
, (2.9)

resulting in the IRs hφ,ϑ[n], which include all IRs from the eight loudspeakers for a single microphone
position. To obtain the single IRs for each loudspeaker microphone combination, the hφ,ϑ[n] needs
to be cut into eight single IRs with a length of N = 1024 samples, such that hφ,ϑ,ls[n] comes up.
Afterward, each microphone’s calculated correction gain from section 2.3.1 is applied to the IRs. As
known from [GZM23], all obtained IRs should be filtered with two peak filters, depicted in Fig. 2.5 to
equalize the loudspeaker towards a flat direct sound frequency response.

Figure 2.5: Filter: f1 = 2.8 kHz, g1 = −6 dB, Q1 = 0.8 and f2 = 22 kHz, g2 = −10.5 dB, Q2 = 1.69

2.3.2 Truncation

To avoid first reflections from the room during measurement, the IRs hφ,ϑ,ls[n] are truncated to
Ncut = 185 samples by finding the first prominent peak and then applying a tapered cosine window
(turkey window) with a cosine factor of 0.09. The window is shifted by a transient time ttransient = 20
samples to include the transient process. An exemplary IR and the truncation window are shown in

Figure 2.6: Exemplary truncation

Fig. 2.6. For further calculation, the truncated IR h′φ,ϑ,ls[n] is Fourier transformed into the frequency
domain, resulting in the complex transfer function

Hφ,ϑ,ls(e
−iω) = F

{
h′φ,ϑ,ls[n]

}
. (2.10)
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2.3.3 Polar Pattern

The main focus of this report deals with the beamforming capability and line source directivity in ver-
tical radiation orientation of the investigated LA. Therefore, only the polar pattern in this orientation
is evaluated. Accordingly, the observation points of interest are the 18 measurements at φ = 0 ◦ and
φ = 180 ◦, composed towards a circle of 36 microphone locations such

Hφ,ϑ,ls(e
−iω) −→ Hmic,ls(e

−iω) (2.11)

Phase and Amplitude Compensation

It is favorable for the interpolation performance at high frequencies to remove the complication of the
amplitude and phase of an off-center source (see rmic,ls in Fig. 2.7) from the polar pattern of every
array loudspeaker. Fig. 2.7 shows an exemplary geometric sketch of these distances for the second
loudspeaker for a single azimuth angle φ. Having the exact positions of all loudspeakers (xls and zls),

Loudspeaker

Microphone

Origin

rmic,ls

Figure 2.7: Unequal loudspeaker to microphone distances

the circular angles of the microphones from the origin ϑmic,ls and the radius of the measured circle
rm = 0.75m, rmic,ls is calculated with

rmic,ls =
√

(rm sin(ϑmic,ls)− xls)2 + (rm cos(ϑmic,ls)− zls)2 . (2.12)

Using Green’s function in the frequency domain Grmic,ls
(e−iω)

Grmic,ls
(e−iω) =

e−ikrmic,ls

4πrmic,ls
with k =

ω

c
, (2.13)

we compensate the level and phase offset by dividing the complex transfer function Hmic,ls(e
−iω) with

Grmic,ls
(e−iω) for each loudspeaker microphone combination respectively, and express the microphone

indices as zenith angles ϑmic, as

Ĥmic,ls(e
−iω) =

Hmic,ls(e
−iω)

Grmic,ls
(e−iω)

= Ĥϑmic,ls(e
−iω) (2.14)

If the loudspeaker radiated omnidirectionally, this operation would cause a zero-phase, equal to 1/r
amplitude at every microphone. For the non-omnidirectional case, the results display the deviations
from the omnidirectional pattern observed at the relative locations between the loudspeaker and
each microphone. This simplified phase-and-amplitude-compensated polar pattern is used for further
calculations.
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2D Interpolation of the simplified polar pattern

Circular harmonics (CH) are used to interpolate between the 10 ◦ discretized values of the amplitude-
and-phase-simplified polar pattern to obtain a denser resolution of e.g. 1 ◦. Generally, the CHs for
real x/z-coordinates, normalized with 1√

2π
can be expressed with

Y (m)(ϑ) =
1√
2π


√
2 sin(|m|ϑ) for m = −1, ...,−M

1 for m = 0√
2 cos(mϑ) for m = 1, ...,M

, (2.15)

and in matrix notation with q as index for the number of Q angles

Yϑ =


sin(Mϑ0)√

π
sin((M−1)ϑ0)√

π
. . . sin(ϑ0)√

π
1√
2π

cos(ϑ0)√
π

. . . cos((M−1)ϑ0)√
π

cos((M)ϑ0)√
π

sin(Mϑ1)√
π

sin((M−1)ϑ1)√
π

. . . sin(ϑ1)√
π

1√
2π

cos(ϑ1)√
π

. . . cos((M−1)ϑ1)√
π

cos((M)ϑ1)√
π

...
...

...
...

...
...

...
...

...
sin(Mϑq)√

π
sin((M−1)ϑq)√

π
. . .

sin(ϑq)√
π

1√
2π

cos(ϑq)√
π

. . .
cos((M−1)ϑq)√

π
cos((M)ϑq)√

π


︸ ︷︷ ︸

2M+1


Q

(2.16)
Using Yϑmic

and Yϑ̃, where ϑmic are the measured angles and ϑ̃ the new angles for interpolation, we
can calculate the dense mesh of interpolated points from the sparse mesh of measured points with

H̃ϑ̃,ls(e
−iω) = Yϑ̃ (Y

−1
ϑmic

Ĥϑmic,ls(e
−iω))T (2.17)

The number of measured angles in the vertical plane is Q = 36. We can choose a denser interpolation
grid with several angles of Q̃. For this purpose, an interpolation grid with Q̃ = 360 angles with a
harmonic order M = 17 was used. Increasing the spatial discretization is mandatory to evaluate the
decay behavior in the far field.

2.3.4 Extrapolation to the Far Field

In addition to the polar pattern for a given distance, the decay behavior with increasing distance is
the subject of this report. Generally, the measured and interpolated vertical polar pattern at the
evaluated azimuth orientation, H̃ϑ̃,ls(e

−iω) is evaluated at angles ϑ̃ = ϑx, which aim at observation
points on a virtual listener distance to obtain the sound pressure at these directions. Fig. 2.8 shows
the desired geometry of listeners distance from 0m to 10m, where the array tilt angle is already
applied as indicated by the rotated microphone positions. Adding the characteristic level drop and

Figure 2.8: Sketch of the geometry for the far field extrapolation in configuration (1).

phase shift, defined by Green’s function Grls,x(e
−iω), for each loudspeaker-observation-point distance
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rls,x =
√
x̃2fl + z̃2ls (see Fig. 2.10 for dimensions), the complex transfer function Hls,x(e

−iω) is given at

these points for each loudspeaker. Adding up all eight Hls,x(e
−iω) for each point result in Hx(e

−iω) as

Hx(e
−iω) =

∑
ls

Hls,x(e
−iω) =

∑
ls

H̃ϑx,ls(e
−iω)Grls,x(e

−iω) . (2.18)

Parallax angles

Having virtually moved the speakers to the origin in the 2.3.3 section, there is an angular mismatch
between the observation points and the original position of the speakers. The correct evaluation angle
of one loudspeaker-observation-point combination ϑx must be adapted to a parallax angle ϑ̃x, which
is the correct mapping for the original layout. Evaluating the polar pattern at this parallax angle ϑ̃x

leads to the correct pressure values at the point of impact on the measured sphere. Having the origin
point at x0 = 0m with z0 = ztop − 4hls = 1.06m− 0.328m = 0.732m and the probe location at zero
height at xfl, the angle to that impact point ϑx is defined as

ϑx = tan−1(
xfl
zls

) with zls = z0 − z1 , (2.19)

where z1 is known from the experimental setup. Fig. 2.9 shows an exemplary sketch of the geometric
context. Expressing xm as the sinusoidal relation of the angles ϑx and ϑ̃x, the distance from a

Loudspeaker

Microphone

ϑ̃x

ϑx

rm

xm

xfl

z2

z1

Origin

Probe Location

rls
z1,2

z0

zls

ztop

hls

Figure 2.9: Parallax angles

loudspeaker to the microphone, rls is given by

xm = rls sin(ϑx) = rm sin(ϑ̃x) ⇒ rls = rm
sin(ϑ̃x)

sin(ϑx)
. (2.20)

Defining z2 with

z2 = rls cos(ϑx) = rm
sin(ϑ̃x)

sin(ϑx)
cos(ϑx) (2.21)

leads to the equation

z1,2 = z1 + z2 = rm cos(ϑ̃x) = z1 + rm
sin(ϑ̃x)

sin(ϑx)
cos(ϑx) ⇒ z1 = rm

(
cos(ϑ̃x)−

sin(ϑ̃x)

sin(ϑx)
cos(ϑx)

)
,

(2.22)
where the wanted parallax angle ϑ̃x is the only unknown. After rewriting eq. (2.22) to

z1
rm

sin(ϑx) = cos(ϑ̃x) sin(ϑx)− sin(ϑ̃x) cos(ϑx) , (2.23)
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the trigonometric theorem

cos(A) sin(B)− sin(A) cos(B) = sin(B −A) , (2.24)

is used to simplify eq. (2.23) to
z1
rm

sin(ϑx) = sin(ϑx − ϑ̃x) . (2.25)

Due to the tilt of the overall array and successively angled loudspeakers, xfl and z1 need to be corrected
by x̃fl = xfl + x̃ and z̃1 = z1 − z̃. The dimensions are sketched exemplarily in Fig. 2.10, such that the
final parallax angle can be obtained by rewriting Eq. (2.25) to

ϑ̃x = ϑx − sin−1

(
z̃1
rm

sin(ϑx)

)
, where ϑx = tan−1(

x̃fl
z̃ls

) . (2.26)

ϑ̃x

ϑx
x̃

z̃

z1
z̃1

zls

xfl

x̃fl

z̃ls
rls,x

Figure 2.10: Offset for parallax angles

2.3.5 LA equalization, broadband A-weighting and third-octave filters

After calculating Hx(e
−iω) at each observation point with the adapted parallax angle ϑ̃x, some further

filtering is required. To match human perception, an A-Weighing filter was used, whose transfer
function1 is given as

HA(iω) =
kA(iω)

4

((iω) + 129.4)2((iω) + 676.7)((iω) + 4636)((iω) + 76617)2
, with kA = 7.39705×109 .

(2.27)
The magnitude of the A-Weigthing filter is shown in Fig. 2.11. Hx(e

−iω) is filtered with HA(iω) in

Figure 2.11: Magnitude of A-Weigthing filter

1https://en.wikipedia.org/wiki/A-weighting
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the complex domain as
Hx,A(e

−iω) = Hx(e
−iω)HA(iω) . (2.28)

Since the LA shows a spectral pink noise behavior, a correction filter (CF) |HCF(e
−iω)| (shown in

Fig. 2.12) compensates the summed frequency response up to the spatial aliasing frequency ωaliasing

and reads as

|HCF(e
−iω)| = min

(√
ω

ωaliasing
, 1

)
. (2.29)

The spatial aliasing frequency ωaliasing = 2π c
dls

is defined by the centrical distance of neighboring chassis

dls = 0.082m. This filter is applied to Hx,A(e
−iω) in the absolute domain as

Hx,A,CF(ω) = |HCF(e
−iω)| |Hx,A(e

−iω)| . (2.30)

Figure 2.12: Spectral correction Filter with faliasing = 4146.34Hz

The average (RMS) relative sound pressure level (SPL) in decibels over the entire frequency range at
each observation point x is then calculated with

LA,RMS(x) = 20 log10


√√√√ 1

N

N∑
ω=0

|Hx,A,CF(ω)|2

 where N =
fs

2
− 1 . (2.31)

To investigate the frequency-dependent decay, Hx,A,CF(ω) was smoothed to third-octave bands using
a cos2 filter bank with magnitudes shown in Fig. 2.13.

Figure 2.13: Magnitudes of cos2 third-octave filters
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3 Results

3.1 Polar Pattern

This report investigated only the vertical directivity of the different configurations with azimuth angle
φ = 0 ◦. Due to the CH decomposition and evaluation using parallax angles, it is possible to obtain
representations of the polar patterns at different distances. The typical radius of 1m was used to
compare different configurations. The angular representation is the same as in Fig. 2.4 in section 2.2,
where 0 ◦ corresponds to upward radiation, 90 ◦ represents the main direction, 180 ◦ corresponds to
downward radiation and the 270 ◦ represents backwards radiation of the loudspeaker.

Single Speaker

The fourth loudspeaker in configuration (4) is closest to the origin and is a point source reference for
further investigations. In Fig. 3.1 the polar pattern at f = [800Hz, 2500Hz, 4000Hz] of this single
speaker is depicted for a radius rm = 1m. At 800Hz, the polar pattern is almost omnidirectional with

800Hz 2.5 kHz 4 kHz

Figure 3.1: Single speaker at 1m

rear damping of −6 dB. The directivity increases by raising the observed frequency due to a relatively
larger membrane diameter. In the theory of piston radiators in infinitely large surfaces, the directivity
angle at f = 4kHz for a diaphragm radius of rd = 3.175 cm is defined with

ϕ(f = 4kHz) = 2 sin−1

(
2.22

k rd

)
≈ 145 ◦ with k =

2πf

c
, (3.1)

which almost matches the polar pattern of the single loudspeaker in Fig. 3.1 at 4 kHz.

Configuration 1

The polar pattern in 1m distance of configuration 1 in Fig. 3.2 shows a drastic increase in directivity
at all evaluated frequencies compared to the single loudspeaker. At 800Hz, the polar pattern already
shows a significant beamforming towards the front and back. The rear damping of −6 dB corresponds
with the damping of the single speaker. A dispersion angle of around 40 ◦ at 2.5 kHz indicates the
operation principle of a line source. Above the spatial aliasing frequency faliasing = c

dls
= 4146.34Hz

the relatively large inter-chassis distances compared to the wavelength causes an interference pattern
along the line source in the vertical domain. A constructive interference is observable above and
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below the LA at the spatial aliasing frequency. The frontal dispersion angle of 30 ◦ at 4 kHz can be
determined at the −6 dB limits of the polar plot. The length of the LA defines the lower frequency

800Hz 2.5 kHz 4 kHz

Figure 3.2: Configuration 1 at 1m

limit to operate as a line source. To investigate this boundary, Fig. 3.3 displays the polar pattern for
the frequencies [100Hz, 200Hz, 400Hz]. The LA shows an almost omnidirectional radiation behavior
at 100Hz. A tiny beamforming effect with −3 dB side and rear damping is visible at 200Hz. The
polar plot at 400Hz shows already a side damping of −12 dB for which we can presume that the LA
begins to act as a line source. From theory, we know that the lower-frequency bound flow for line

100Hz 200Hz 400Hz

Figure 3.3: Configuration 1 at 1m

source behavior is dependent on the total array length lLA = 65.6 cm. The LA starts acting as a line
source as the radiated wavelength reaches the dimension of the array length, so in our case, the lower
bound is flow ≈ c

lLA
≈ 500Hz. Applications for line source arrays are typically in the long throw. The

800Hz 2.5 kHz 4 kHz

Figure 3.4: Configuration 1 at 4m

polar pattern is extrapolated to a radius of 4m for the three evaluated frequency bands in Fig. 3.4 to
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illustrate the beamforming capability of this array. Especially at 2.5 kHz, the polar pattern indicates
proper beamforming towards the listener area, having a dispersion angle of < 20 ◦. It shows that even
at this distance, the spatial aliasing lobes at 4 kHz are that dominant.

Configuration 2

The second investigated design in configuration 2 aims for a decay of −1.5 dB per dod. Fig. 3.5 displays
the polar pattern at the three frequencies of interest. Overall, the polar pattern at the frequencies
of interest is very similar to configuration 1. A slight increase of level towards the 115 ◦ direction
(especially at 2.5 kHz) is observable and can be explained by the curvature of this configuration. At
4 kHz, the spatial aliasing equals the one of configuration 1, but the main lobe in the 95 ◦ direction
seems slightly more comprehensive.

800Hz 2.5 kHz 4 kHz

Figure 3.5: Configuration 2 at 1m

Configuration 3

On the view of configuration 3 in Fig. 3.6, the differences between all three configurations are very
gentle in the near field at 1m. Only the spatial aliasing sidelobe is of a negligible different shape,
and the main lobe is again slightly broader. Even at 800Hz, the main lobe is more tilted downwards,

800Hz 2.5 kHz 4 kHz

Figure 3.6: Configuration 3 at 1m

indicating more sound pressure in the near field and a faster decay towards the far field. The three
configurations’ polar pattern is only meaningful in the near field. The extrapolation onto a one-
dimensional listener depth seems reasonable, and the results are presented in the next section 3.2.
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3.2 Decay

Using the presented methods in section2, the pressure measured points at the initial 10 ◦ grid are inter-
polated to a dense grid of 1 ◦ resolution and then extrapolated to a listener depth of 0m−16m using the
parallax angles. In the following figures, the depth (x-axis) is implemented as semi-logarithmic (linear
from 0m to 1m, and then logarithmic) to simplify the observation of doubling the distance. Fig. 3.7
shows the A-weighted SPL decay of the single uppermost loudspeaker. The thin coloured lines are
1/3-octave bands with center frequencies [250Hz, 500Hz, 1000Hz, 2000Hz, 4000Hz, 8000Hz, 16 000Hz].
The expected point source decay of −6 dB per dod is visible starting at a distance of 2m. Due to the

Figure 3.7: A-weighted SPL decay of a single speaker (uppermost)

directivity of the chassis at higher frequencies, the SPL under the loudspeaker at 0m is less, and the 1
r

decay behavior initially starts at 2m. In contrast to the single loudspeaker, Fig. 3.8 depicts the decay
of the LA in configuration 1. The blue dotted line illustrates the predicted design with 0 dB per dod
from 1m to 6m. Beyond 6m the SPL is expected to drop with −6 dB per dod. The A-weighted SPL

Figure 3.8: A-weighted SPL decay of configuration 1

of configuration 1 matches almost the design with minor deviations at 1m and 3.5m. Due to the 1 ◦

loudspeaker curvature angle resolution, the tiny mismatch of the design at 3.5m occurs because the
design could not be suspended accurately. Looking at the 1/3-octave bands, the spatial aliasing above
4 kHz and point source behavior below 500Hz is observable. Especially in the range from 1 kHz to
4 kHz, the decay of 0 dB per dod is achieved.
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The second configuration aims for a design with a decay of −1.5 dB per dod. Compared to the
other designs, in configuration 2 the A-weighted SPL best matches the design slope as shown in
Fig. 3.9. As observed earlier in the configuration, the frequencies between 1 kHz to 4 kHz show the
best beamforming behavior, resulting in the most consistent decay. Spatial aliasing from the 4 kHz is
also clearly visible.

Figure 3.9: A-weighted SPL decay of configuration 2

The decay of configuration 3 is depicted in Fig. 3.10. The design of −3 dB is only partially achieved.
Only in the tiny range from 2m to 3m the goal was reached. Between the distance of 1m to 2m, the
SPL is significantly too low, while the one from 3m is to high. The overall slope is more similar to a
design of 0 dB per dod.

Figure 3.10: A-weighted SPL decay of configuration 3
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4 Discussion & Conclusion

4.1 Discussion

In this report, measurements of a small-size variable curved line source array are processed and eval-
uated to gain knowledge about the circular radiation pattern in the near field and the decay behavior
in the far field. Therefore, the geometric properties are studied in detail, and CH interpolations and
extrapolations into the far field using parallax angles are performed to obtain valid results.

The resulting polar pattern confirms the results’ validity and shows how the dispersion of the whole
LA behaves in the near field. The radiation boundaries towards lower frequencies match the theory,
and even spatial aliasing becomes visible. The extrapolation to larger radii illustrates a LA’s beam-
forming effect but is unsuitable to predict the decay behavior in the far field.

Considering the angular displacement, evaluating parallax angles with subsequent extrapolation into
the far field results in meaningful decay predictions. Due to limitations in precise curvature angle
between the single loudspeaker, not all intended decays are achieved accurately.

4.2 Conclusion

In this report, the results of a measured loudspeaker array, which has only a coarse grid of microphones
in a small near-field radius, are significantly improved using the methods presented. Interpolation
using CH increases the angular resolution, mandatory for accurate evaluation at the displaced parallax
angles. The listener depth can be precisely sampled by summing the individual loudspeaker impacts at
one observation point, evaluated at the correct angle, and extended by the correct amplitude and phase
supplement using the Greens function. This allows meaningful predictions of the far-field behavior of
an array measured in the near-field. Compared to standard software applications, which superimpose
the polar pattern of single enclosures, this technique even allows reflection and diffraction effects at
the edges of neighboring loudspeakers.
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