
Instrumentalmusik und Live-Elektronik
LVA 17.0078

Week 3

Intro to programming

• functions
• arrays
• loops

functions

Functions have:

- name: how you call a function (e.g. myFunction)
- parameters/ arguments: things you give to the function to
compute (e.g. Math.sine(x): you are giving x as a parameter)
- return type: the type a function gives you back. Some functions
compute a value for you (e.g. Math.sin(x) gives you a flaoting point
value, the sine of x.)
some functions do something and you don’t need a value back
(e.g. setTempo(...) would return type void.

Declaring your own function:

fun return_type function_name(param1_type param1_name, param2_type param2_name, ...) {

//function body goes here

return some_object_of_return_type; //or just return; if return_type is “void”

}

functions

Calling functions:

if you call a function you must have already defined and declared
your function as in previous page. Then you have to options to call
it:

Syntax option 1:
function_name(param1_value, param2_value,...);

Syntax option 2:
(param1_value, param2_value, ...) => function_name;

If the function is associated with an object or class use the function
or class name before the function and attach it with a “.”.
e.g. s.freq() or Std.sin(x)

functions

Parameters and scope

The parameter names you use in your function declaration will be
treated as local variables within the function. Remember learning
about local variables inside loops, where something declared within
a set of {} brackets isn’t accessible from outside those brackets?
This is the same thing, except you don’t have to declare the
parameters separately (the function declaration takes care of this).
Of course, you’re free to declare other local variables within the
function.

fun int add(int x, int y) {
int z;
x + y => z; return z;
}
x, y, and z will not be accessible anywhere outside this function.

functions

Masking

What if the name of a global variable is the same as the name of a
function parameter or other local variable? This is legal, but it
causes the local variable to mask the global variable. (In fact, if you
have nested scopes (nested {} sets), the inner-most variable of that
name will be used.)
example:

0 => int x; {
5 => int x;
<<< x >>>; }
<<< x >>>;

Will print out:
5 :(int)
0 :(int)

arrays

array

An array is a list of objects of the same type (e.g., a list of ints, a list
of floats, or a list of SinOscs). There may be 0 or more objects in
the array.
- Declaring without assigning a value
//array

int x;
float y;
//array
int x[1];
float y[5];

arrays

- Declaring and assigning a value (instantiation) at the same time
// single variable
0 => int x;
5.0 => float y;

// array
[0,1,2,5,7,6] @=> int x[];
[5.0,19.0,23.92] @=> float y[];

- Assigning a new value
// single variable
0 => int x;
10 => x;

// array
[0,1,2] @=> int x[];
[7,6] @=> x;
//illegal [1.2,2.5] @=> x;

arrays

You can assign an array variable using @=> as above. But if you
want to access the individual elements (e.g., the int values
themselves), you have to use an index. This index indicates the
“chunk number” of the element we want in the array, starting with
0. That is, x[0] is always the first element in the array, and x[n-1] is
the last for an array of size n.
// single variable
SinOsc s;
50 => s.freq;

// array
[0,1,2,5,7,6] @=> int x[];
10 + x[1] => x[2];
//use => instead of @=> for assigning primitive types
SinOsc s[2];
50 => s[0].freq;

arrays

You can get the size of an array by using the .size() method. For
now, we’re going to be dealing with static arrays, so use .size() just
to get the size and not to set it.

[0,1,2,5,44,12] @=> int x[];
<<< x.size() >>>; //prints out 6
100 => x[x.size()-1];//sets the last element of array x to
100 instead of 12

If you try to access an array element that doesn’t exist (with an
index that is too high), ChucK will crash and print out a message
“ArrayOutOfBounds.”

loops

While loops:

All while loops have the form:
while (condition) {

do stuff
}

condition is a boolean expression that evaluates to true or false.

[0] @=> int i;
while (i< 10) {
 <<< i >>>;
 i++;
}

loops

for loops:

All while loops have the form:
for (initialization; condition; expression) {

do stuff
}

loops

The condition and loop body play the same rolls as in while loops.
Here, though, the initialization is typically used to initialize a
“counter” variable before the first iteration of the loop, and the
expression is typically used to increment this counter after each
loop iteration. For-loops can accomplish exactly the same set of
tasks as while-loops, but they’re most useful (and most often used)
to execute something a set number of times. (Leaving out the
initialization and expression is equivalent to using a while loop.)

[10,20,30,40] @=> int x[];
for (0 => int i; i< x.size(); i++) {
 <<< x[i] >>>;
}

