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Introduction

The simulation of room impulse responses (RIR) for direc-
tional sources and receivers in arbitrarily-shaped rooms
has been subject of research in numerous publications,
e.g. [1, 2, 3]. Simulations nowadays involve numerous
successful efforts [4, 5] to achieve auralization.

By contrast, this study aims at simplistic source-and
receiver-directional room impulse response (srdRIR) mod-
eling and therefore considers the case of a perfectly sound-
hard rectangular room. By this, we carry on the work of
Pollow et al. [6] who extended the room mode method
by source and receiever directivity using multipole deriva-
tives. They compared results with the boundary element
method. As the simplistic case is solved by the image
source method and the room mode method as two co-
existing analytic methods [7], we review differences be-
tween them using exemplary multipole derivatives and
directional analysis of the resulting srdRIR. The main dif-
ference between the room mode and image source method
are the domain of summation: (i) discrete room modes in
case of the room mode method, (ii) discrete image sources
in case of the image source method.

Room mode solution omnidirectional. The mode
solution for an omnidirectional source at r′ = [x′, y′, z′]T

and an omnidirectional receiver at r = [x, y, z]T in a
sound-hard Lx × Ly × Lz rectangular room is [1, 7]

H0 = ψT(r) diag{b(ω)}ψ(r′). (1)

The vector b(ω) = [buvw(ω)] contains modal resonances

buvw(ω) = c2(2π)−1

ω2
uvw−(ω−iσ)2

for non-negative indices (u, v, w)

ringing at the frequencies ωuvw = π c
√

u2

L2
x

+ v2

L2
y

+ w2

L2
z
;

σ = 3 ln(10)/T60 yields a finite reverberation time. The
vector ψ = [ψuvw(r)] contains the respective room
modes ψuvw = NuNvNw cos( πLx

ux) cos( πLy
v y) cos( πLz

w z)

normalized by N2
u = (2− δu)/Lx, N2

v = (2− δv)/Ly,
N2
w = (2− δw)/Lz. Typically, the vectors contain a finite

set of modes below an upper frequency limit ωuvw ≤ ωmax.

Image source solution omnidirectional. Here
Green’s function G = e−ik‖r−r

′‖(4π ‖r − r′‖)−1 is dis-
placed and mirrored periodically in space yielding [1, 7]

H0 =

∞∑
u=−∞

∞∑
v=−∞

∞∑
w=−∞

G

(
x−[uLx+(−1)u x′]

y−[v Ly+(−1)v y′]

z−[w Lz+(−1)w z′]

)
. (2)

By limiting the time-delay τuvw = ‖r − r′uvw‖/c ≤ τmax,
we obtain a finite sum.

Figure 1: Impulse and frequency response of the room mode
method (omnidirectional) for several modal cutoff frequencies;
the highpass filter (if/10)2/(1+if/10)2 and T60 = 1s was used
to stabilize the shape of the impulse response. Room is 7 ×
5 × 3m, source at (3.5, 2.5, 3.5), receiver at (1.75, 1.25, 0.75).
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Multipole derivative operator

An operator of the form, cf. [6, 8],

∂lmnxyz := (−ik)−(l+m+n) ∂l

∂xl
∂m

∂ym
∂n

∂zn
(3)

can be applied to H0 to describe directivity at source
and receiver, or to the free-field Green’s function G =
(4πr)−1e−ikr, which originally only depends on the dis-
tance r. Far away, ∂lmnxyz G becomes (see appendix I)

lim
r→∞

∂lmnxyz G = θlxθ
m
y θ

n
z G = Mlmn(θ)G, (4)

with θ = r/r representing the direction θT =
[θx, θy, θz] = [cosϕ sinϑ, sinϕ sinϑ, cosϑ] from which
the source is received. Moreover, the multipole directivi-
ties Mlmn(θ) depend on indices specifying the number of
derivatives with regard to each coordinate.

Any Nth-order directivity can be decomposed into the
basis of (N+1)(N+2)(N+3)/3 multipoles of the Nth order.
We specify far-field directivities of source and receiver by

g(θ) =

N∑
l=0

N−l∑
m=0

N−l−m∑
n=0

γlmnMlmn(θ) = mT(θ)γ, (5)

in terms of the multipole expansion coefficients γlmn.
They determine the response for particular direcitivities

γ
(R)
lmn, γ

(S)
l′m′n′ as the linear combination of multipole-to-

multipole responses H l′m′n′

lmn := ∂lmnxyz ∂
l′m′n′

x′y′z′ H0,

H =
∑
lmn

∑
l′m′n′

γ
(R)
lmnH

l′m′n′

lmn γ
(S)
l′m′n′ . (6)



Figure 2: Impulse and frequency response of the room mode
method (omnidirectional) for several time limits τmax; the

envelope 10
−60 t

20τmax stabilizes temporal shape and response
spectrum (room geometry as before).
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Application to the room mode method

For a mode index u and coordinate x, structurally for
every factor of the spatial modes resembling cos( πLux),
l-fold differentiation wrt. source or receiver coordinates
yields manipulation to, cf. [8],

dl cos( πLux)

dxl
= ( πLu)l

[
cos( πLux) cos(π2 l)

− sin( πLux) sin(π2 l)
]
.

Then ∂lmnxyz ∂
l′m′n′

x′y′z′ H0 contains modes accordingly modified

H l′m′n′

lmn = (−ik)−aψT
lmn(r) diag{b(ω)}ψl′m′n′(r′)

to their multipole derivatives; a = l+ l′+n+n′+m+m′.

Application to the image source method

For any coordinate, Green’s functions in the image source
method depend on image index u, receiver coordinate x,
and source coordinate x′, G = G(x+ (−1)u+1x′ − uLx).
Derivatives wrt. x′ and x are related by a sign change
∂
∂x′ = (−1)u+1 ∂

∂x . Both l-fold receiver-coordinate and

l′-fold source-coodinate differentiation for ∂lmnxyz ∂
l′m′n′

x′y′z′ H0

can be aggregated for the image source index u along x to
∂l

∂xl
∂l
′

∂x′l′
= (−1)l

′(u+1) ∂l+l
′

∂xl+l′
, and in the same way for the

other coordinates. The far-field approximation Eq. (4)
performs reasonably well for the directivities, and it offers
simple and fast calculation, cf. Fig. 3 and appendix II.
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Figure 3: Frequency response H100
010 = ∂010

xyz∂
100
x′y′z′H0 of the

image source method for τmax = 50 ms as accurate solution
(nf) and far-field approximation (ff); in addition to envelope

10
−60 t

20τmax , nf was stabilized by (if/15)a/(1 + if/15)a, a =
2 . . . total number of derivatives (room geometry as before).

Comparison of resulting H0, H
100
000 , H

100
010

The room mode method produces stable results after reg-
ularization of the 0 Hz mode by a second-order highpass,
cf. Figs. 1, 4(a), 4(c). Here, synthesis was done in the
discrete Fourier domain, so damping T60 < ∞ was ap-
plied to avoid cyclic inverse Fourier transform. The result
exhibits sharp spectral peaks at resonance frequencies
and steeply decays above the summation limit fmax. Ac-
cordingly, sinc-shaped impulses in the temporal response
resemble the characteristics of a zero-phase lowpass. Con-
cerning multipole-derived responses in Fig. 4(c), the room
mode method is less robust and requires additional low-
frequency stablization. This is caused by the weak spec-
tral decay limω→0

1
ω2−ω2

u
= 1

ω2
u

of high-frequency modes,

which is counter-acted by the l-fold differentiation am-
plifying these modes by ωlu. What is more, the modal
density around the mode u is proportional to ω2

u, there-
fore the rather stochastic factor ψu(x)ψu(x′) is not always
enough to ensure numerical stability at low frequencies.

To avoid spectral ripple for the image source model,
and to facilitate comparison, an exponential window

10−60
t

20τmax was imposed on the resulting impulse re-
sponse, see Figs. 2, 4(b), 4(d). Due to the synthesis
in the frequency domain, the image source method ex-
hibits sinc-shaped fractional delays in the time domain.
Still, temporal peaks are sharp. In case of the accurate
solution in appendix II, the order of the DC-stabilizing
highpass must increase with the derivative order.

Despite the resulting spectral and temporal similarities,
the image source method does not provide full-length
simulation of impulse responses, while the room mode
method does not provide their full-spectrum simulation.

Directional analysis

Spherical harmonics instead of multipoles

The spherical harmonics only use (N + 1)2 terms to de-
compose an Nth-order directivities alternatively to Eq. (5)

g(θ) =

N∑
n=0

n∑
m=−n

Y mn (θ) γ(SH)
nm = yT(θ)γ(SH) (7)

using spherical harmonics up to order N

Y mn (θ) =

√
(2n+ 1)(n− |m|)!

2(n+ |m|)!
Pmn (θz)Φm(ϕ), (8)

Φm(ϕ) =

√
(2− δm)

2π

{
sin(|m|ϕ), m < 0

cos(|m|ϕ), m ≥ 0,
(9)

where Pmn () are associated Legendre / Ferrer’s functions.
To convert between expansion coefficients γ(SH) and γ,
we equate the expansions of g(θ) evaluated at all nodes of
a t = 2N-design sampling grid, g = [g(θ1), . . . , g(θL)]T,

g = Y γ(SH) = Mγ . (10)

With the pseudoinverse denoted as ()†, we obtain

γ = M †Y γ(SH) = Cγ(SH). (11)

A 2N-design [11] as sampling criterion avoids aliasing and
yields well-conditioned M and Y ; also Y † = 4π

L Y
T.



Figure 4: Impulse and frequency responses of room mode and image source methods for H100
000 = ∂000

xyz∂
100
x′y′z′H0 and H100

010 =

∂010
xyz∂

100
x′y′z′H0 for several modal/temporal cutoffs; highpass and envelope for room mode method were (if/10)2/(1 + if/10)2 and

T60 = 1s, and for the image source method 10
−60 t

20τmax (room geometry as before).
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(a) H100
000 room mode method (frequency response only)
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(b) H100
000 image source method (frequency response only)
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(c) H100
010 room mode method
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(d) H100
010 image source method

Source-and-receiver-directional RIR (srdRIR)
By C in Eq. (11), the linearly combined multipole-to-
multipole responses Eq. (6), HMP(t) = [H l′m′n′

lmn (t)], is
converted to spherical-harmonics-to-spherical-harmonics

h(t) = γT
MP(R)HMP(t)γMP(S) (12)

= γT
RC

THMP(t)C γS = γT
RH(t)γS.

The SH-domain srdRIR H(t) expanded in spherical har-
monics yields a ray-domain srdRIR, an impulse response
of a source that exclusively emits sound towards θS and
a receiver that exclusively picks up sound from θR,

h(θR, t,θS) = y(θR)TH(t)y(θS). (13)

h(θR, t,θS) peaks at arrival times, provided that the ray
directions θS, θR match the corresponding emitting and
receiving directions of the acoustic path, cf. [9].
The orthonormality

∫
S2 y(θ)y(θ)T dθ = I of the spherical

harmonics enables deriving the SH-domain RIR Eq.(12)
from the ray-domain srdRIR Eq. (13) by integration with
the source and receiver directivities Eq. (7) g(θS), g(θR),

h(t) =

∫∫
S2
g(θR)h(θR, t,θS) g(θS) dθRdθS. (14)

Ray-domain energy maps

To simplify ray-domain inspection, a map is defined at
the receiver accumulated over all emission directions as

h2(θR, t) =

∫
S2

h2(θR, t,θS) dθS (15)

= y(θR)TH(t)H(t)T y(θR);

and h2(t,θS) = y(θS)TH(t)TH(t)y(θS) at the source.

Example: A rectangular room of the dimensions 4.5×
3.1× 2.2 was simulated using both methods. The receiver
and source were placed at (1.2, 3.1, 2.2) and (2.5, 0.8, 1),
and the srdRIR was simulated up to 2nd order. Energy
maps for selected arrival times are shown in Tab. 1, cf. [8].
Early reflections are resolved more clearly in energy maps
of the image source method. They indicate the emitting
and receiving ray directions. While the mapping of the
room mode method is just less accurate for direct and
1st-order reflected sound (1st and 2nd line in Tab. 2), its
low temporal resolution around the 2nd-order reflection
causes a mix of adjacent reflections (3rd line in Tab. 1).

Conclusions

We compared the room mode method and the image
source method to simulate responses of a sound-hard rect-
angular room. To involve source and receiver directivities,
we utilized multiple Cartesian derivatives. While we did
not find a far-field approximation for the room mode
method, we expect the far-field approximated result of
the image source method to typically be accurate enough.

To enable comparison, both methods were stabilized, i.e.,
by exponential temporal weighting for the image source
method and by 2nd order high-pass filtering for the room
mode method. Impulse responses of the image source
method are better resolved but finite in time, while fre-
quency responses of the room mode method are better
resolved but finite in the spectrum.

For high-order directivities, the room mode method ex-
hibits convergence problems at low frequencies. Direction-
ally, energy maps indicate smaller accuracy of the room
mode method. Moreover because of its inferior temporal
resolution, directions of similar flight times tend to mix.



Table 1: Energy maps of exemplary acoustic paths for the image source and room mode method.

image source method room mode method
Path h2(t,θS) h2(θR, t) h2(t,θS) h2(θR, t)
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Appendix I: multiple derivatives with ∂
∂x = x

r
∂
∂r become

lim
r→∞

∂l

∂xl
G =

∂l−1

∂xl−1
lim
r→∞

[x
r

] ∂
∂r
G

=
∂l−2

∂xl−2
lim
r→∞

[
r2 − x2

r3
+
x2

r2
∂

∂r

]
∂

∂r
G

= θlx lim
r→∞

∂l

∂rl
G = θlx

∂l−1

∂rl−1
lim
r→∞

[
−ik− 1

r

]
G

= (−ik)lθlxG,

Appendix II: to avoid far-field approximation, Green’s
function G is written as 0th-order spherical basis solution

G = − i k√
4π
h
(2)
0 Y 0

0 (−θ) = − i k√
4π
bT e0, (16)

with the vector b = [hnY
m
n ]nm containing all basis solu-

tions composed of spherical Hankel functions and spher-
ical harmonics, e0 = [1, 0, . . . ]. Cartesian differentials
re-expand to spherical basis solutions by sparse, frequency-
independent matrices, ∂

∂xb = kDxb, cf. [10], so that

∂l

∂xl
∂m

∂ym
∂n

∂zn
b = kl+n+m(Dx)l(Dy)m(Dz)

n b. (17)
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