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Introduction

Ambisonics is driven by the idea that its underlying
multichannel audio representation works nicely on any
loudspeaker arrangement, if it is decoded suitably. Only
a little of this promising idea became true in the past
as decoding was an absolutely non-trivial thing for
any general, irregular loudspeaker arrangement that
spans a three dimensional surface. In fact, classical
sampling and mode-matching decoders are well-behaved
on special, regular arrangements only. The authors
recently presented two decoding methods that cope with
loudspeaker arrangements of any kind: energy-preserving
and all-round Ambisonic decoding. Which of them
is better, and how good are they compared with the
classical sampling and mode-matching decoders? This
contribution sketches their particularities and shows an
exemplary comparison using various estimators visualiz-
ing the smoothness of the phantom source in terms of
loudness, directional mapping error, and width.

Virtual Panning Function in Circular and

Spherical Harmonics

The technique we call Ambisonics expresses the excita-
tion of the sound field as a continuous function at some
specified radius R where the loudspeakers are placed
at. We call this a virtual panning function as it is
continuous and therefore an idealization of what can
be controlled by real loudspeakers. Nevertheless, in
Ambisonics this function is conveniently expanded into
orthonormal circular or spherical harmonics of limited
order n, |m| ≤ N. Stacking these functions into a vector
yN(θ) and their expansion coefficients into another vector
εN, we obtain

g(θ) = yN(θ)
T εN, (1)

where the vector θ = [cosϕ sinϑ, sinϕ sinϑ, cosϑ]T de-
pends on azimuth ϕ and zenith ϑ. For virtual sound
sources, a useful shape of g(θ) is obtained by the
expansion coefficients of a Dirac delta function at the
panning direction θs and optional weights aN

εN(θs) = diag{aN} yN(θs). (2)

As the order is limited, the angular resolution of this
function is strictly limited. In circular systems, yN

contains circular harmonics Φn of limited −N ≤ n ≤ N:
cos(nϕ)/

√
π for n > 0, sin(nϕ)/

√
π for n < 0, and 1/

√
2π

for n = 0. In spherical systems, yN contains spher-

ical harmonics Y m
n :

√

(n−|m|)!(2n+1)
(n+|m|)! 2 P

|m|
n (cosϑ)Φm(ϕ)

employing the circular harmonics and the associated
Legendre functions Pm

n with 0 ≤ n ≤ N, −n ≤ m ≤ n.

The weights diag{aN} suppress the side lobes (Gibbs
phenomenon) of the virtual panning function. Suitable
max-rE weights are, cf. [3], an = cos (n 90◦/(N + 1))
for circular and an = Pn (139

◦/(N + 1.51)) for spherical
systems. (Other than here, but equivalently, weights are
classically part of decoding Eq. (4) not encoding Eq. (3).)

Ambisonic Encoding and Decoding

In Ambisonics, a mono signal s(t) can be encoded as
virtual source at the direction θs by the vector of Eq. (2),

χN(t) = εN(θs) s(t). (3)

Typical Ambisonic signals χN(t) contain several linearly
simperimposed virtual sources or recordings. The signals
are distributed to a discrete arrangement of L loudspeak-
ers at the directions {θl}l=1...L by a decoder D that needs
to be determined somehow. The loudspeaker signals x(t)
are obtained by matrix multiplication with this decoder

x(t) = D χN(t). (4)

Decoder design aims at finding D to optimally present
the Ambisonic signals Eq. (3) to the human ears using
the discrete loudspeakers. In fact, decoder design has
been one of the biggest challenges in Ambisonics. Three
decoder designs are discussed below, which are decribed
in the articles [1, 2]: sampling Ambisonic decoding
(SAD), all-round Ambisonic decoding (AllRAD), and
energy-preserving Ambisonic decoding (EPAD). Because
mode-matching Ambisonc decoding (MMAD) can be
unstable, we only discuss it in the appendix.

Sampling Ambisonic Decoding (SAD)

The simplest decoding is sampling the virtual pan-
ning function Eq. (1) at the L loudspeaker directions
{θl}l=1...L, cf. [6]. The sampled harmonics are

YN = [yN(θ1), . . . , yN(θL)], (5)

and the transpose of this matrix evaluates εN. Normal-
ized by the mean angular segment of each loudspeaker,
SAD for a semi-circular system is

DSAD =
π

L
Y T
N . (6)

SAD is optimal for t-design layouts with t ≥ 2N + 1,
cf. [2], i.e. regular≥ 2N+2-polygons for a circular system.

All-Round Ambisonic Decoding (AllRAD)

All-round Ambisonic decoding, cf. [2], is designed in two
steps. First, an optimal virtual loudspeaker layout is
considered, e.g., a regular 50-polygon, for which the sam-

pling decoder D
(opt)
SAD is optimal (energy-preserving and

mode-matching). Secondly, the signals of these virtual
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Figure 1: Energy, directional energy mapping error,
energy spread of EPAD (energy-preserving decoder) for
examplary semi-circular loudspeaker layout and the orders
N = {2, 4, 8, 12}; EPAD only works up N = 8 in the example.

loudspeakers are mapped to the real loudspeakers by
a matrix G obtained by vector-base amplitude panning
(VBAP, [7]). Combining both steps we get

DAllRAD = G1:L,:D
(opt)
SAD . (7)

For incomplete circular/spherical layouts, G involves
an imaginary (L + 1)st dummy loudspeaker (or more)
to control the signal loss at missing directions. An
interesting equivalence of AllRAD to the most VBAP-like
Ambisonic decoding is described in the appendix section.

Energy-Preserving Ambisonic Decoding (EPAD)

On the semi circle, the number of required basis functions
can be reduced to push the loss of energy out of
the panning range and to maintain a high definition
elsewhere. For a semi circle of the range |ϕ| ≤ 90◦, an
SVD is done of a matrix that contains uniformly sampled
harmonics of the slightly over-sized range, cf. [1],

U S V T = svd{[yN(−105◦),yN(−104◦), . . . ,yN(105
◦)]}.

The (2N + 1)-sized basis of the circular harmonics can
be reduced to a set of N + 1 basis functions. Given
singular values in S sorted in descending order, the
reduction matrix can be written (in MATLAB notation)
as UT

:,1:N+1. Left multiplication is used to re-expand any
Ambisonics-encoded function. All loudspeaker directions
are encoded without weights by YN, cf. Eqs. (5) and (2).
The energy-preserving decoder takes another SVD of the
re-expanded loudspeaker encoding

Ǔ Š V̌ T = svd{UT
:,1:N+1 YN}.

After transposition, omission of the singular values, and
re-expansion of the Ambisonic signals, energy-preserving
decoding becomes, cf. [1]:

DEPAD = V̌:,1:N+1Ǔ
T UT

:,1:N+1. (8)
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Figure 2: Energy, directional energy mapping error, energy
spread of the SAD (sampling decoder) for examplary semi-
circular loudspeaker layout and the orders N = {2, 4, 8, 12}.
Ê curves were normalized in the mean between −90◦ and 90◦.

Example: semi-circular layout

Let’s assume an irregular semi-circular loudspeaker
layout with loudspeakers located at {ϕl} =
{−90◦,−60◦,−44◦,−25◦,−5◦, 30◦, 50◦,65◦, 90◦} and
the decoders DSAD, Eq. (6), DAllRAD, Eq. (7), DEPAD,
Eq. (8). In particular, regarding Eqs. (2), (3), and (4),
we see that Ambisonic encoding and decoding allows the
interpretation in terms of amplitude panning gains

g(θs) = DεN(θs) (9)

to distribute signals to the loudspeakers. To evaluate the
quality of these gains for panning, we employ the quality
measures below.

Quality measures

The energy measure, cf. [4], Ê(ϕs) estimates the loudness
fluctuation of the decoder using Eq. (9)

Ê(ϕs) =

L
∑

l=1

g2l (ϕs). (10)

The r̂E measure, cf. [4], r̂E(ϕs) =
∑

L

l=1
g2

l
(ϕs)θl

Ê(ϕs)
is a vector

estimating the directional mapping of a decoder. Its
direction is used to estimate the angular mapping error,
cf. [1]. For a circular system, this is

ǫ̂E(ϕs) =

[

arctan
r̂E,y(ϕs)

r̂E,x(ϕs)
− ϕs + 180◦

]

mod360◦
− 180◦.

(11)

The length of rE is used to estimate the angular spread
of a decoded virtual source

σ̂E(ϕs) = 2 arccos‖r̂E(ϕs)‖. (12)
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Figure 3: Energy, directional energy mapping error, energy
spread of the AllRAD (all-round decoder) for examplary semi-
circular loudspeaker layout and the orders N = {2, 4, 8, 12}.
Ê curves were normalized in the mean between −90◦ and 90◦.

All these three measures, Ê, ǫ̂E, σ̂E, should ideally be
panning-independent, i.e. constant, cf. [1]. As the exem-
plary layout is non-ideal, we expect panning-dependent
quality measures.

In all examples below, we included the measures for
VBAP as a reference. In addition to the imaginary
loudspeaker at 180◦, the employed modified variant of
VBAP used the square root of its unnormalized gains to
ensure ǫ̂E = 0 in the panning range.

Properties of energy-preserving decoding. Fig. 1
shows the loudness measure Ê obtained by EPAD which
is perfectly constant in all the panning range between
−90◦ and 90◦. The mislocalization ǫ̂E is rather smooth,
but sounds are pulled inwards at the ±90◦ boundaries of
the playback facility. The spread σ̂E is only wiggly in the
largest gap between −5◦ and 30◦.

Properties of sampling decoding. Fig. 2 indicates
that SAD produces a loudness dip in Ê wherever the
spacing of the loudspeakers is large. Moreover, SAD
tends to create large mislocalization overshoots of ǫ̂E at
these positions. The spread σ̂E is rather smooth.

Properties of all-round decoding. Fig. 3 shows the
Ê curve of AllRAD. The energy fluctuation seems rough,
keeping in mind that the decoder to the underlying
virtual layout is optimal. The mislocalization ǫ̂E is highly
smooth and very small, and it still is at the border of the
±90◦ panning range. The spread σ̂E has the least wiggles
and overshoots of all decoders and even decreases outside
the panning range, which seems preferable.

Improved Definition AllRAD+

Inspecting Figs. 2 (SAD) and 3 (AllRAD), the opposing
tendencies of the loudness measure Ê become obvious
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Figure 4: Energy, directional energy mapping error,
energy spread of AllRAD+ (improved all-round decoder) for
examplary semi-circular loudspeaker layout and the orders
N = {2, 4, 8, 12}. Resulting Ê curves were normalized in the
mean between −90◦ and 90◦.

for N ≤ 8. We expect an improved performance of their
combination

DAllRAD+ = gAllRADDAllRAD + gSAD DSAD. (13)

In fact, constant energy that is achieved for the idealized
virtual loudspeaker setup in AllRAD is corrupted by
the VBAP stage as, per loudspeaker pair, all virtual
sources are superimposed linearly instead of energet-
ically. The prevailing linear superposition increases
the energy wherever the loudspeaker spacing is large.
Roughly, at such directions AllRAD doubles the energy,
whereas it is halved at directions with dense loudspeaker
spacing. Conversely, SAD might lose all energy where
the loudspeaker spacing is large and roughly doubles it
where the loudspeaker spacing is dense. For both cases,
solving the estimated equation system

( √
2 0

1/
√
2

√
2

)(

gAllRAD

gSAD

)

=

(

1
1

)

(14)

for unity yields gAllRAD = 1√
2
, gSAD = 1√

8
. Fig. 4 shows

the hereby-obtained improvement in the curve for Ê. The
favorable angular mapping characteristics of AllRAD is
largely preserved in both ǫ̂E and σ̂E.

Conclusion

In this contribution, we compared the recent develop-
ments: the superior but complicated energy-preserving
decoding (EPAD) and all-round Ambisonic decoding
(AllRAD). We obtained an improved decoder AllRAD+
by combining AllRAD with sampling decoding (SAD).
The loudness variation of AllRAD+ is competitive with
EPAD and its angular mapping resembles AllRAD.



−90 −60−44−25 −5 30 50 65 90

−5

0

5

Ê
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Figure 5: The MMAD (mode-matching decoder) with α = 0
does not compete with other decoders.

Acknowledgment

The authors thank Aaron Heller for a fruitful discussion
concerning the properties of AllRAD and about improv-
ing this paper. Moreover, we thank Nicolas Epain for
sharing his valuable perspective on AllRAD with us,
which is described in the appendix.

Appendix: The most VBAP-like decoder

In a conversation at AIA-DAGA, Nicolas Epain proposed
to regard his most VBAP-like Ambisonic decoder. Ac-
cording to Epain, this decoder, let’s abbreviate it by
MVLAD, is equivalent to AllRAD. This interesting per-
sective is acknowledged here by a short formal derivation.

Let’s write g
(v)
l for the panning gain calculated by

VBAP [7] for the lth loudspeaker.
Unweighted Ambisonic panning/decoding to loudspeak-
ers is g(a) = DyN(θs). Defining the row of the lth

loudspeaker in the decoder as dT
l , we obtain the gain

g
(a)
l = yN(θs)

T dl for the lth loudspeaker.

The MVLAD minimizes the squared deviation [g
(a)
l −

g
(v)
l ]2 to gains calculated with VBAP. We can define it
by minimization across all panning directions θs:

∫

[

yN(θs)
T dl − g

(v)
l (θs)

]2

dθs → min ∀ l. (15)

By sampling all directions, e.g. by a numerical
integration rule, we may minimize the vector norm

instead of the integral
∥

∥

∥
Y T
N dl − g

(V)
l

∥

∥

∥

2

→ min ∀ l..
Here, YN = [yN(θ1), . . . ,yN(θS)] and g

(v)
l =

[gl(θ1), . . . , gl(θS)]
T contain values for various panning

directions {θs}s=1...S. The least square error solution

is dl = (YN Y T
N )−1YN g

(v)
l . With VBAP and decoder

matrices of all loudspeakers, and transposed back, it is

DMVLAD = G Y T
N (YN Y T

N )−1. (16)

Here, Y T
N (YN Y T

N )−1 is normally a well-behaved
mode-matching decoder, especially if the integration
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Figure 6: The MMAD is competitive after adding α = 1

4

L

π
.

rule/sampling {θs}s=1...S uniformly covers a huge set
of all directions on the unit circle or sphere. Then the
approximation Y T

N (YN Y T
N )−1 ≈ 2π or 4π

S Y T
N holds, and

MVLAD, Eq. (16), is equivalent to AllRAD, Eq. (7).

Appendix: Mode-Matching Decoding

Mode-matching decoding (MMAD) superimposes the
loudspeakers’ encoding coefficients Eq. (5) to fit those
of any virtual source, cf. [5], i.e. YN DεN = εN using

DMMAD = Y T
N (YNY

T
N + αI)−1, (17)

which is unstable for α = 0 in a semi-circular system,
cf. Fig. 5. It gets stable by regularization, i.e. after less
accurately matching the modes, by setting, e.g., α = 1

4
L
π
.

This is the reciprocal of a suitable scalar times the mean
angular segment covered by each loudspeaker, cf. Fig. 6.
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