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Abstract: This contribution presents a new approach for analysing spatial directions in room impulse responses

captured with source and receiver of adjustable directivity. A distinct peak in a room impulse response is

usually associated with an acoustic path length of direct or reflected sound. Given the ability to modify the

directivity of source and receiver by spherical beamforming, beam coefficients can be adjusted as to emphasize

the peak at a preselected time instant. We present a new approach to jointly optimize the coefficients for both

source and receiver under the constraint of a unit peak amplitude while minimizing the energy of the entire

response. The beam pattern described by these coefficients highlights the dominant acoustic path directions of

the corresponding path length at the source and the receiver.
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1. Introduction

Standard acoustic measurements typically employ omni-directional loudspeaker and microphone1. Recently, spherical

microphone arrays have been used in room acoustic studies2, showing improved spatial analysis. Directional loud-

speakers have been used as a new tool in room acoustic measurements3, showing advantages over an omni-directional

loudspeaker. The special benefit of directional loudspeakers is their ability to excite specific parts of acoustic room

response compared to omni-directional loudspeakers. Spherical loudspeaker arrays are suitable candidates for direc-

tional sources in room acoustic investigation, due to their spherical symmetry in radiating sound in three-dimensions,

and flexibility in design4.

Systems that incorporate both spherical microphone arrays and spherical loudspeaker arrays have been studied only

very recently. Farina propsed the use of such a system for room acoustic analysis5, detailing a method for recording

concert hall data, such as multiple room impulse responses. Zotter et al. showed how to model spherical loudspeaker

arrays as sources with adjustable directivity6. Moreover, a compact spherical array of microphones have been applied

to analyse the acoustic path directions observed from receiver side2,7. Morgenstern and Rafaely have presented a more

theoretical analysis of a multiple-input multiple-output (MIMO) system8 analysing system properties and behavior.

Although such systems have been presented and investigated in general, no specific method has been proposed to

arrive at an improved spatial analysis of concert hall or room acoustics.

This work potentially improves analysis of reflection paths in enclosed sound fields by a new signal processing

method, requiring the use of acoustic MIMO systems based on spherical arrays. Acoustic reflections are emphasized

by directional loudspeakers as soon as the directivity is aligned with the reflection path. Obviously, alignment with a

reflection path is a fairly discrete geometrical condition. Mignot et al. describe room responses as sparse in direction

and time and discuss suitable computational means to analyse acoustic reflections9. Particularly the early part of the

room response is assumed to consist of such directionally sparse reflections at the bounding surfaces of the room. Each

reflection path has a length that corresponds to a time-delay in the room response.

Previously Morgenstern and Rafaely formulated the room response observed between spherical loudspeaker and
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spherical microphone array as a frequency-domain MIMO matrix, of which they suggested to consider the singular

values to observe new aspects8. By contrast, the present paper expands on a time-domain formulation and a simplified

concept of a far-field approximation. This emphasizes the natural sparseness of the room responses in time and angle

and yields two new algorithms to form optimal beams that carry valuable information about acoustic reflection paths.

2. Sparse model of a room response

An idealized, sparse response from one source to one receiver in a room can be regarded to be composed of individual

reflection paths. Each path is characterized by its amplitude, path length, and source and receiver directions, yielding

the characterization of the ith path {ai, τi, θR,i, θS,i}. The directions θR, θS are Cartesian unit vectors and the

propagation delay τ expresses the path length. The spatial impulse response from source to receiver is a sum over

all propagation paths. Each path is composed of a product of three Dirac delta functions selecting the respective path

from the continuous time t and continuous directions θR, θS. The impulse response can therefore be written as:

h(t, θR, θS) =
∑

i

ai δ(t− τi) δ(θR − θR,i) δ(θS − θS,i). (1)

Given source and receiver by their directivities gS(θS) and gR(θR), the impulse response is obtained by integration

over both, h(t) =
∫

S2

∫

S2
gR(θR) h(τ, θR, θS) gS(θS) dθR dθS. There is no attempt to represent wall reflections

with impulse responses other than delta functions and acoustic near-fields at low frequencies, to maintain simplicity.

Source and receiver directivities specified in spherical harmonics are computed by gX(θX) =
∑

γ
(X)
nm Y m

n (θX),
and the transform identity

∫

S2
Y m
n (θ) δ(θ − θi) dθ = Y m

n (θi) converts the integral in Eq. (1) into a summation

h(t) =
∑

n,m,n′,m′

γ(R)
nm hn′m′

nm (t) γ
(S)
n′m′ , with hn′m′

nm (t) =
∑

i

ai δ(t− τi) Y
m
n (θR,i) Y

m′

n′ (θS,i). (2)

A Finite resolution MIMO-matrix is now formulated. The modeled impulse responses hn′m′

nm can be individually

measured using spherical arrays of loudspeakers and microphones. In practice, this is only possible within limited

orders, 0 ≤ n′ ≤ NS, 0 ≤ n ≤ NR, according to directional resolution limits of source and receiver; the other index

is mathematically limited as −n′ ≤ m′ ≤ n′, −n ≤ m ≤ n. Eq. (2) can be first written in matrix form as sums over

both pairs of indices nm and n′m′ and then vectorized:

h(t) =
[

γ(R)
nm

]T

nm

[

hn′m′

nm (t)
]n′m′

nm

[

γ(S)
nm

]

nm
=: γT

R H(t)γS, (3)

where γX contains the (NX + 1)2 directivity or beamforming coefficients of source (X=S) and receiver (X=R). It is

also wise to point out an alternative vectorization of the problem that is used for joint beamforming later on

h(t) =
[

hn′m′

nm (t)
]T

nmn′m′

[

γ
(R)

nm
γ
(S)
n′m′

]

nmn′m′

=: h(t)T c. (4)

Notice the relations h(t) = vec{H(t)} and c = vec{γR γT
S }.

Moreover, the time resolution is limited in practice. For simplicity we assume time segments Tj = jε+
[

−ε

2 ;
ε

2

)

along which information is gathered by integration h(j) =
∫

Tj
h(t) dt for the discrete-time index j ∈ Z; this

also defines a discrete-time version of hn′m′

nm (t). For long segment lengths ε several reflections might superimpose,

cf. Eqs. (2) (3),

H(j) =
∑

τi∈Tj

ai
[

Y m
n (θR,i)

]

nm

[

Y m
n (θS,i)

]T

nm
=:

∑

τi∈Tj

ai y(θR,i)y(θS,i)
T. (5)

Note the similarity of this sum to a singular value decomposition. We conclude that the number of superimposed
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reflections determines the rank of the matrix, rank {H(j)} ≤ |{τi ∈ Tj}|, apart from the common size limits of the

rank (min{NS,NR}+ 1)2. Nevertheless, for different i the vectors y(θR,i) and y(θS,i) need not be orthonormal.

3. Joint beamforming by singular value decomposition at the instant j0

In this section we focus on one time instant j0 which contains at least one reflection path. The goal here is to find

beamforming weights that enforce a unity amplitude at this time instant h(j0) = 1. In order to find suitable weights,

we use the representation given in Eq. (4) to formulate the least-squares problem

min cTc (6)

s. t. h(j0)
T c = 1. (7)

It yields the solution c = h(j0)/‖h(j0)‖2 and minimizes the directivities in directions that do not support the trans-

mission from source to receiver. However, the solution does not directly reveal the joint beamforming coefficients: it

is related to their products, and we may define it in matrix form

c = vec{γR γT
S } =: vec{C}. (8)

Accordingly, the matrix form of the solution is C = H(j0)/‖H(j0)‖2F. More than one solution might exist, depend-

ing on the entries of C; in this case specified by the rank of H(j0), cf. Eq. (5). In general, suitable pairs of solutions

for γR and γS can be defined by left and right singular vectors of

C = U S V T =
∑

i

si ui v
T
i (9)

to be γ̂R,i = ui, and γ̂S,i = vi, and their significance is ranked by the singular value si. To meet the criterion the

solution needs to be re-normalized h(j0) = 1

γR = ui/
√
a (10)

γS = vi/
√
a, with a := uT

i H(j0)vi.

Case study using simulated room response. A room with dimensions of of (8m, 9m, 10m) was simulated using

McRoomSIM10. The directivity matrix, as in eq. (5), relating order-limited source and receiver, with Ns = 4 and

Nr = 3, located at (xs, ys, zs) = (1m, 1.5m, 2m) and at (xr , yr, zr) = (7m, 6.5m, 6m), respectively, was constructed.

For the diagram of the room and the early reflections segement of the omni-directional response see figs. 1(a) and

1(b). Fig. 2(a) demonstrates the directivity by plotting u1, v1 for the direct path, singular vectors ofH(j0). Figs. 2(b)
and 2(c) demonstrate two directivity patterns corresponding to u1, v1 and to u2, v2: two sets of singular vectors of

H(j1), where j1 corresponds to a time instant in which two reflections are superimposed.

4. Joint beamforming by constrained minimization for all instants j

It is possible to achieve h(j0) = 1 for one time instant of an impulse response using optimal beamforming coefficients

for source and receiver. Moreover, it is possible to minimize the energy of the entire impulse responsemin
∑

j h
2(j),

for all time instances, subject to this constraint by requiring

min cTGc,
subject to h(j0)

T c = 1
with G :=

∑

j

h(j) h(j)T. (11)
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Figure 1: a) Diagram of the simulated room; red and blue sphere represent source and receiver, respectively, b) Impulse response

between omni-directional directivity patterns at source and receiver.

(a) (b) (c)

Figure 2: Resulting beam patterns of joint beamforming for one time instant: (a) for the instant of the direct sound, (b) and (c) and

two coinciding early reflections, i.e. having the same path length.

The solution of such a problem is known from minimum variance distortionless resposnes (MVDR) beamforming11

and yields

c =
G−1 h(j0)

h(j0)T G−1 h(j0)
. (12)

In our case the matrix to be inverted is frequently numerically singular and therefore unstable, but it can always be

regularized. This is done using the eigendecomposition G = Q diag{[λi]i}QH to define the regularized inverse as

G−1 ≈ QH diag{[ 1
λi+α

]i}Q with the regularization parameter α. Once more, the above solution does only deliver

products of the joint beamforming weights. Therefore the same procedure has to be applied as specified in Eqs. (9)

and (10) of the previous section to find the weights.

Case study using simulated room response The same room as in sec. 3 was simulated. Fig. 3(a) demonstrates

the optimized beamformer derived as in sec. 4, constraining the amplitude of the direct sound while minimizing the

response. The figure shows the graphical interpretation of the optimization process; i.e., the main lobes of both source

and receiver point in the directions of the constrained time instance while nulls are placed in the directions interfering

reflections.

Influence of the regularization parameter α and the relation between the solutions In the limit of a large pa-

rameter α, the above matrix inverse is approximated as scaled identity matrix limα→∞ QH diag{[ 1
λi+α

]i}Q = 1
α
I.

In this case, the above solution yields the minimization of the entire beam patterns instead by the optimal solution

c = h(j0)/‖h(j0)‖2, which is the same as described in the previous section.
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(a)

Figure 3: Result of joint beamforming minimizing the squared impulse response: (a) unity constraint for the time instance

of the direct sound.

5. Conclusions and further work

We presented two methods to obtain jointly optimal directivities for a source and a receiver array in a room, regarding

the room impulse response. This facilitates room geometry estimation and spatial analysis of room reflections. The

first joint beamformer yields a pair of minimal directivities under the unit response constraint at one time instant. Its

beam patterns support directions of reflections with suitable delay. The second proposed beamformer minimizes the

room response instead and hereby suppresses reflection paths with other delays. This method requires regularization.

We showed that the amount regularization links the two beamformers: in the limit of a large regularization parameter

the two beamformers (sec. 3 and 4) become equal.

Further work is expected to include methods to reduce the effect of matrix regularization, and for developing

improved formulations for computing the coefficients that facilitate best spatial separation of room reflections.
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