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INTRODUCTION 
Compact microphone arrays are used for sound field 
analysis (source localization, source identification), 
spatial sound recording, spatial filtering of sound 
(beamforming) and can be found in various applications 
from speech recognition to room acoustical 
measurements. Especially compact spherical 
microphone arrays received special attention over the 
last decade because of the uniform treatment of all 
directions which is crucial for the capture and 
reproduction of 3D acoustical scenes, cf. [1, 2, 3]. 
However, in some given acoustical scenes the sound 
sources can be constrained only to a certain area, letting 
spherical arrays seem redundant. For that purpose 
hemispherical arrays have been investigated, see [4], 
and also circular arrays mounted on a rigid cylinder, cf. 
[5, 6]. 
 
Fig. 1 shows different rigid shapes for microphone array 
geometries. The sound pressure distribution is assumed 
to be available on the horizontal ring in Fig. 1(a), or on 
a ribbon around the horizon in Fig. 1(b). As this 
pressure distribution is the basis of array signal 
processing, it is simulated and used in order to compare 
the different resolution properties of these array types. 
Correlations of the pressure distributions due to 
different plane waves carries information about the 
spatial resolution. We propose a method to find the 
resolution limits by investigating the correlation 
matrices of paired  

(a) (b)

(c)
 

Fig. 1. Different array shapes whose resolution 
properties are to be estimated: (a) ring arrays 
on a sphere and cylinders of different lengths, 
(b) ribbon arrays on a sphere and cylinders of 
different lengths., and (c) the entire shape used 
as array 
 
plane waves. The determinant of these correlation 
matrices measures the discriminability  
and is used to indicate difference angles above which 
two plane waves can be distinguished. 
 
ANALYTIC DESCRIPTION OF RIGID 
CYLINDRICAL AND SPHERICAL SCATTERERS 
In this section the analytical description of a cylindrical 
and a spherical scatterer is reviewed.  
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This contribution discusses sound field recording with microphone arrays on the finite rigid cylinder. Sound 
field analysis with rigid cylinders has been discussed most often using the solutions of the Helmholtz 
equation in two dimensions. Rigid cylindrical arrays of finite length cannot be formulated in such an
elegant way. Nevertheless, it is possible to simulate a rigid cylindrical array using the boundary element 
method to obtain the responses to an incident field. To compare the characteristics of rigid cylinder arrays 
to rigid spherical arrays, the incident field is expanded into spherical harmonics 
. For both spherical and cylindrical arrays, the decomposition with regard to azimuth is easily achieved in 
terms of trigonometric functions, even when only using microphones on the equatorial plane. 
Discrimination between different elevation angles is improved by adding more microphones on different 
heights on the cylinder. This is shown for cylindrical bodies with different diameter-to-height ratios in 
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The Helmholtz equation is given by 

             Δp(r)+ k2p(r) = 0 ,                           (1) 

where p(r)  is the sound pressure at a certain location 
r = [ρ,φ, z] , k  is the wavenumber, and Δ  is the 

Laplace operator in cylindrical coordinates (Fig. 2).  

(a) Cylindrical (b) Spherical  

Fig. 2. Cylindrical and spherical coordinate 

system. Cylinder: ρ = x2 + y2 , ϕ = arctan(
y

x
) and 

z = z . Sphere: r = x2 + y2 + z2 , ϕ = arctan(
y

x
)  and 

ϑ = arctan
z

r
. The domain of definition is  

ρ, r ∈ [0,∞) , ϕ ∈ [0, 2π ) , z ∈ (−∞,∞)  and ϑ ∈ [0,π ]  . 

 
Cylinder 
The scattering of a plane wave incident on a rigid 
cylinder is most often described by assuming the 
cylinder to be of infinite length. The one dimensional 
plane waves scattered on an infinite cylinder only need 
to satisfy the radiation condition in the cylindrical 
radius. Hence the following solution is correct, cf. [7, 8, 
9], for the sound pressure on the cylinder due to a plane 

wave from φ0 , ϑ 0  

      p(k, z,φ) =
m=−∞

∞

∑ 2π im+1 Φm (φ0 )Φm (φ) e
ik cosϑ0 z

kRsinϑ 0H ′m
(2) (kRsinϑ 0 )

,      (2)

where R  is the radius of the cylinder, Hn'
(2) (kRsinϑ 0 )  

is the first derivative of the Hankel function of the 
second kind, and Φm (φ)  are the normalized 

trigonometric functions 

Φm =
2−δm
2π

cos(mφ), form ≤ 0,

sin(mφ), form<0.

⎧
⎨
⎪

⎩⎪
        (3)

The term kRsinϑ 0H ′n
(2) (kRsinϑ 0 )  will not become zero 

for ϑ 0 = 0  ; it is proportional to 
2

kRsinϑ 0

⎛

⎝
⎜

⎞

⎠
⎟

n

 for small 

arguments. 
The solution for a finite-length cylinder cannot be given 
in closed form [7, p. 31], and fulfilling of the 3D 
radiation condition becomes necessary. It seems the 

scattering off a finite-length cylinder has to be simulated 
numerically using other methods. 

Sphere 
The scattering response of a plane wave impinging from 

ϕ0 , ϑ 0  on a rigid sphere is given by 

p(k,φ,ϑ ) =
n=0

∞

∑
m=−n

n

∑ 4π in−1 Yn
m (φ0,ϑ 0 )Yn

m (φ,ϑ )
(kR)2h ′n

(2) (kR)
,     (4) 

where hn'
(2) (kR)  is the spherical Hankel function of the 

second kind, and the real valued spherical harmonics 

Yn
m (φ,ϑ )  are defined as 

Yn
m (φ,ϑ ) =

(2n+1)(n−m)!
2(n+m)!

Pn
m (cosϑ )Φm (φ) , (5) 

using the trigonometric functions Eq. (3) and the 

associated Legendre functions Pn
m (cosϑ )  with their 

normalization factor, cf. [9]. 

NUMERICAL DESCRIPTION OF CYLINDRICAL 
SCATTERERS  
Analytic solutions for scattering problems with arbitrary 
geometries are not available. However, such problems 
can be solved numerically with the Boundary Element 
Method (BEM), cf.  [10] [11]. We use this method to 
calculate the sound pressure on the surface of a finite-
length rigid cylinder for plane waves impinging from 
different directions. 
 
Helmholtz Integral Equation 
The Helmholtz integral equation (HIE) describes the 
sound pressure in a homogeneous volume V  of air by 
integration of a weighted continuous distribution of 
point sources (monopoles) and their normal derivative 
(dipoles) over the volume boundary ∂V ,  

C( ′r )p( ′r ) =
∂V∫∫ (p(r)

∂G(r | ′r )
∂n

−
∂p(r)
∂n

G(r | ′r ))dS + pI ,  

(6) 
where r  lies on the boundary and ′r  is the observation 

point. The terms p(r) , and 
∂p(r)
∂n

 are the boundary 

sound pressure and its normal derivative, respectively; 

G(r | ′r ) =
e−ik||r− ′r ||

|| r− ′r ||
 is the Green's function, and 

∂G(r | ′r )
∂n

 its normal derivative. The term pI ( ′r )  

describes the free field sound pressure on the boundary 
and is expressed by  

pI = e
ik (x cosφ0 sinϑ0+ysinφ0 sinϑ0+zsinϑ0 ) ,         (7) 

for a plane wave impinging from ϕ0,ϑ 0 . The weight 

function C( ′r )  depends on the location of the 
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observation point ′r  with respect to the volume V  of 
the medium  

C( ′r ) =

0, ′r ∉V

Ω( ′r )
4π

, ′r ∈∂V ,

1, ′r ∈V

⎧

⎨

⎪
⎪

⎩

⎪
⎪

               (8) 

where Ω( ′r )  is the solid angle lying inside V  for the 

observation point ′r . 
 
Boundary Element Method 
The concept of BEM is to approximate the surface 
integral by a sum of discrete boundary elements. For 
these elements, smaller integrals are solved for a set of 
observation points, the collocation points. The simplest 
evaluation method assumes a constant sound pressure 
on each element and solves for the observed sound 
pressure by numerical integration, cf. [12]. This yields a 
linear system of equations which can be written in 
matrix form  

Cp =Hp−Gpn +p
I,                     (9) 

where C  is the N×N  diagonal matrix containing the 

solid angles, p , pn , and pI  are N×1  vectors 

containing the total sound pressure, its normal 
derivative, and the free field sound pressure, 
respectively, at the N  collocation points. H  is the 
“dipole matrix” and G  the “monopole matrix”, each 

N×N  and containing the results of the respective 

numerical integrals. 
For a rigid scatterer, the normal derivatives vanish for 
collocation points located on its surface, and in this 

caste (9) reduces to Cp =Hp+pI . Hence, the sound 

pressure on the surface of a rigid scatterer is yields  

p = (H−C)−1pI.                        (10) 

All BEM calculations are carried out using OpenBEM, a 
freely available Matlab based toolbox from Peter Moller 
Juhl and Vicente Cutanda Henriquez [13]. Fig. 3 shows 
the geometric mesh models used for the BEM 
calculations. 

 
ANALYSIS OF SPATIAL RESOLUTION 
The equations presented before are used to calculate the 
sound pressure distribution that is considered for the 
array design in response to any plane wave. In order to 
evaluate the horizontal and vertical resolution as 
illustrated in Fig. 4, a set of 2 plane waves are assumed 
to form the matrix of quasi continuous sound pressure 

samples PI = [pI(φ1,ϑ1), p
I(φ2,ϑ 2 )] . For solutions 

obtained with BEM, the corresponding surface sound 
pressure is calculated according to the above equation. 

P = (H−C)−1PI.                        (11) 

(a) R=1, L=0.5 (b) R=1, L=1 (c) R=1, L=2  

Fig. 3. Cylinders models for BEM at different 
ratios (2:1, 1:1, 1:2) between height and 
diameter. 

One of our particular interests is to find out how the 
resolution changes with the zenith angle if a cylindrical 
array is used, in comparison with a spherical array that 
offers a uniform resolution. Let's assume a set of two 
plane waves from ϕ = 0 , centered around the zenith 

angle ϑ 0  and separated by a space of Δϑ , i.e. 

PI = [pI(ϑ 0 −Δϑ / 2),p
I(ϑ 0 +Δϑ / 2)] ; another pair of 

plane waves that is 90  rotated with respect to ϑ 0  is 

used to determine the “horizontal” resolution. 
 
The correlation of the two plane waves with regard to 
their surface sound pressure P  obtained by Eq. (11) 
gives us a 2× 2  matrix  

 

R(ϑ 0,Δϑ ) = P
HP =

p1
Hp1 p1

Hp2
p2
Hp1 p2

Hp2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
=

r11 r12

r12
* r22

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
. (12) 

In order to distinguish between these two plane waves, 
the determinant  

 |R(ϑ 0,Δϑ ) |= r11r22 − r12
* r12           (13) 

must be big enough, i.e. |R(ϑ 0,Δϑ ) | ≥ Rth . Herein, 

Rth  is a threshold proportional to the squared sound 

pressure. This measure can be seen to reflect the 
acoustic properties of a certain geometry concerning the 
discrimination capabilities of different sound pressure 
distributions due to different incidence directions. 
 
 

 

Fig. 4. Geometry of a “vertical” and 
“horizontal” resolution angle with regard to a 

reference zenith angle ϑ 0 . 
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RESULTS 
The three different configurations shown in Fig. 1 (ring, 
ribbon, whole surface array) are simulated assuming a 
dense enough sampling, i.e. the absence of spatial 
aliasing. For the ribbon-shaped array surface, a fixed 
height of ±0.5R  is used. Fig. 5-7 show the spatial 

resolution that was calculated using Eqs. 12 and 13 
choosing a threshold of Rth ≥ 0.5  and two different 

wavenumbers k = 0.4  and k = 6 . All diagrams are 

divided into a left half depicting the “vertical” 
resolution and a right half depicting the “horizontal” 
resolution. 
Fig. 5 shows that ring arrays on the different scatterers 
cannot resolve waves that are symmetric around the 

equatorial plane ϑ 0 = π / 2 . This accounts for the 

typical half space confusion of symmetrical planar 
arrays. The resolution improves for directions closer to 
the zenith and nadir, where it is similar to the 
approximately constant horizontal resolution. Naturally, 
the resolution is better for the higher wavenumber 
where one or more wavelengths are sampled by the 
array. Overall, the resolution of all cylindrical scatterers 

is similar to the one of the sphere, except for ϑ 0  around 

zenith or nadir, where it is slightly smaller. 
Fig. 6 plots the resolution of ribbon-shaped arrays on 
the different scatterers. The best horizontal and vertical 
resolution is similar, and the resolution around the 
equatorial plane ϑ 0 = π / 2  strongly improves as the 

array extends in three dimensional. Again, cylindrical 
scatterers seem slightly inferior to a spherical one. 
Fig. 7 shows the spatial resolution for an active array 
aperture covering the entire surface of the scatterer. As 
expected, the full-sampled sphere yields constant 
resolution in all directions, whereas it is only constant 
horizontally for the cylinders. The vertical resolution of 
long cylindrical scatterers with an array spread on the 

entire surface is naturally better around ϑ 0 = π / 2  than 

for a sphere of the same radius. 

 
CONCLUSIONS 
We proposed a horizontal and vertical resolution 
measure to evaluate ring and ribbon-shaped array 
apertures on cylindrical scatterers. The observation was 
mostly based on numerical simulations, and analytic 
formulations were included for the cases of a rigid 
sphere and the infinite cylinder. 
Concluding, the horizontal resolution does not vary 
much for arrays on different scatterers, even at different  
zenith angles ϑ 0 . It seems that the vertical resolution is 

merely affected around ϑ = π / 2  and the difference is 

deteremined by the height of the effective array 
aperture. Hence, only the cylinder that is twice as high 
as wide clearly outperforms a sphercical array in its 
vertical resolution around the horizontal plane. 

Exploiting the scattering off a cylinder to build 
microphone arrays does not seem to yield a substantially 
different spatial resolution compared to the sphere and 
therefore should be further investigated. In our future 
work, we intend to investigate if cylindrical surface 
modes can be found that are similarly useful as the 
spherical harmonics are for spherical arrays. 
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Fig. 5. : Spatial resolution for a ring array on 
different bodies, cf. Fig. 1. The solid line 
represents a sphere, the dashed line a cylinder 
with R =1,L = 0.5  and the dash-dotted line a 

cylinder with R =1,L = 2 . 

 

90 60 30 0
0

20

40

60

80

ϑ
0

Δ
ϑ

V

horizon

0 30 60 90
0

20

40

60

80

ϑ
0

Δ
ϑ

H

zenith horizon

(a) kR = 0.4

90 60 30 0
0

5

10

15

ϑ
0

Δ
ϑ

V

horizon
0 20 40 60 80

0

5

10

15

ϑ
0

Δ
ϑ

H

zenith horizon

(b) kR = 6.0155  

Fig. 6. Spatial resolution for a ribbon array on 
different bodies, cf. Fig. 1. The solid line represents a 
sphere, the dashed line a cylinder with R =1,L = 0.5  

and the dash-dotted line a cylinder with R =1,L = 2 . 
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Fig. 7. Spatial resolution for an array fully sampling 
different bodies, cf. Fig. 1. The solid line represents a 
sphere, the dashed line a cylinder with R =1,L = 0.5  

and the dash-dotted line a cylinder with R =1,L = 2 . 
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