


Analysis and Synthesis of Sound-Radiation with

Spherical Arrays

Dissertation by

Franz Zotter

For the Degree
Doktor der Naturwissenschaften

Comittee:
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ABSTRACT

This work demonstrates a comprehensive methodology for capture, analy-

sis, manipulation, and reproduction of spatial sound-radiation. As the challenge

herein, acoustic events need to be captured and reproduced not only in one but in

a preferably complete multiplicity of directions, instead. The solutions presented

in this work are using the soap-bubble model, a working hypothesis about sound-

radiation, and are based on fundamental mathematical descriptions of spherical

acoustic holography and holophony. These descriptions enable a clear methodic

approach of sound-radiation capture and reproduction. In particular, this work

illustrates the implementation of surrounding spherical microphone arrays for the

capture of sound-radiation, as well as the analysis of sound-radiation with a func-

tional model. Most essential, the thesis shows how to obtain holophonic reproduc-

tion of sound-radiation. For this purpose, a physical model of compact spherical

loudspeaker arrays is established alongside with its electronic control.
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KURZFASSUNG

Diese Arbeit beinhaltet eine umfassende Methodik zur Aufnahme, Ana-

lyse, Manipulation und Wiedergabe von räumlicher Klangabstrahlung. Die neue

Herausforderung liegt darin, akustische Ereignisse nicht nur in einer Richtung,

sondern einer möglichst vollständigen Vielzahl an Richtungen zu erfassen und wie-

derzugeben. Die Lösungen in dieser Arbeit gehen vom Seifenblasenmodell, einer

Arbeitshypothese über die Schallabstrahlung, aus und stützen sich auf mathema-

tische Grundbeschreibungen von kugelförmiger akustischer Holografie und Holo-

phonie. Diese Beschreibungen ermöglichen einen klaren methodischen Zugang zu

Abstrahlungsaufnahme und -wiedergabe. Insbesondere wird damit die Umsetzung

von umgebenden kugelförmigen Mikrofonanordnungen zur Abstrahlungsaufnahme

sowie die Auswertung der Abstrahlung anhand eines funktionalen Modells gezeigt.

Als wesentlichsten Beitrag zeigt die Dissertation, wie Abstrahlung holophon wie-

dergegeben werden kann. Dazu wird herausgearbeitet, wie kompakte kugelförmige

Lautsprecheranordnungen physikalisch modelliert und elektronisch gesteuert wer-

den.
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Chapter I

INTRODUCTION

In order to explain the purpose of analysis and synthesis of spherical sound-

radiation, it is crucial to get an overview of the history and soil this particu-

lar research interest has grown on. Mainly, this work finds motivation from two

research areas.

Firstly from the music or computer music perspective, the motivation for di-

rectivity pattern synthesis is associated with loudspeakers and their application as

musical sound sources. According to the articles [Cur00] and [LSO06], acoustic di-

rectivity pattern synthesis mimicking the sound-radiation of musical instruments

starts in the nineteen seventies, with some criticism by Pièrre Boulez about the

quality of loudspeaker playback.

Secondly, room acousticians use sophisticated software packages that facilitate

the acoustical design process, taking into account the directivity of sound sources.

In principle, these software packages are able to simulate the basic quality measures

in room acoustics but also offer realistic simulations of virtual sound scenes to make

audible an acoustic room in its early design stages. Usually, the sound sources can

be endowed with their own directivity to get more accurate simulation results. On

the other hand it is interesting to evaluate excellent concert hall acoustics also by

measurements of its directional characteristics. For this purpose, the capability of

directional measurement and radiation becomes necessary.

Evidence on perceived sound-radiation. According to information provided

by René Caussé (IRCAM), and the hints from Gerhard Eckel, Adrian Freed, and

David Wessel, there was an experiment on the sound radiated from a violin, con-

ducted some decades ago at IRCAM in Paris. The experiment has never been

published, but had a rather important impact and serves as a motivation for the

present work. René Caussé states that the experiment was presented to the au-

dience at the conference “Artelier Ircam1” at IRCAM in 1989. According to his

statement, it was conducted by Jean-Marie Adrien, Peter Eötvös, and Olivier

Warusfel. Three versions of a violin sound were presented to the auditorium,

cp. Fig. 1. The first was coming from a real violin played by a violinist. The

second sound originated from a violin playback over a single loudspeaker taken

1Subtitle: “Mâıtriser l’espace: une étude sur le rayonnement des sources sonores”
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Figure 1: Violin radiation demonstration at IRCAM.

from a recording with a single microphone. The third version was produced by

the vibration of the violin bridge reconstructed at the bridge of a stand-mounted

violin2.

In contrast to the loudspeaker playback, the sound radiated by the artificially

excited violin has been described as lively and present, exhibiting much bigger

similarity to the violin played by the violinist. This demonstration is regarded

being a strong evidence for the perceptual influence of sound-radiation; even if it

is unknown to what extent sound-coloration has been isolated as a possible cue

by equalization.

Systematic directivity capture and reproduction? It might be a good idea

regard sound-radiation of sources separately from its diffusion into rooms. In order

to systematically develop tools for directivity analysis and synthesis, two questions

should be posed:

• How do we determine the overall directivity patterns of sound sources?

• How can we make room acoustics measurements with directivity adjustable

to particular kinds of natural sound sources?

1.1 A Soap-Bubble Model of Sound-Radiation

Before getting into the details in the subsequent sections, I offer an illustrative

image of how to interpret sound radiation, capture, and synthesis of sound sources.

2Original announement: “La prise de son sur le violon est réalisée par deux céramiques

piezoélectriques placées au bas des pieds de chevalet. Les deux cristaux sont sensibles à la force

dynamique qui leur est appliqué, et sont suffisemment durs et légers pour supporter la pression

statique exercée par les cordes, et ne pas modifier le fonctionnement du chevalet. L’ensemble est

monté sur un violon de qualité.”
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Let us assume a free sound field (no sources or obstacles) and an ideal3 soap bubble

that is large enough to enclose a musician and an instrument. As the instrumen-

talist produces sounds, the soap-bubble surface vibrates strictly according to the

motion of the air molecules. The wave-form of the vibration represents the sound

radiated to the respective point of observation on the sphere. Generally, the qual-

ity of the sound may vary between different points of observation. Specifically,

the loudness and timbre of the radiated sound is dependent on the position of the

observer with respect to the instrument.

Figure 2: Soap-bubble model of acoustic radiation.

Capturing the radiated sound. According to literature on acoustics (e.g.

Williams [Wil99]), it is sufficient to completely identify the motion of this contin-

uous surface in order to describe the acoustic sound-radiation of enclosed sound

sources entirely. This type of setting is called exterior problem. A continuous

capture of this motion may seem out of reach, but spatial sampling of the spher-

ical surface with microphones, i.e. a surrounding spherical microphone array, is

feasible, see Fig. 3.

Reproducing the radiated sound. Given a suitable arrangement of loud-

speakers (ideally a spherical membrane that can be driven in every mode of vi-

bration at every frequency) the acoustic radiation from a sound source can be

reproduced entirely. The goal is to produce the same patterns of motion on a

soap bubble around this technical device as those, the capture of which has been

described above. A feasible way of achieving this is again to sample the spherical

3The surface of the bubble must not have mass, stiffness, or friction.
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Figure 3: Capturing the sound-radiation of the bonang barung with 26 microphones in
a hemispherical arrangement in an acoustically damped chamber at IEM (in the picture:
Rainer Schütz (Institute of Ethnomusicology, Graz) playing it).

surface with individually driven loudspeakers, i.e. a compact spherical loudspeaker

array.

What has been neglected implicitly? To capture the sound appropriately,

the microphones and the surrounding room must not be an obstacle in the sound

field, i.e. they must not cause reflections of the radiated sound. Otherwise the

problem becomes a mixed interior and exterior problem, cf. [Wil99].

In free-field conditions, or an anechoic measurement chamber, a playback de-

vice can be matched as to produce the same directivity pattern as measured

from an instrument. However, when operating in ordinary rooms, i.e. a differ-

ent acoustic load, sound sources with the same free-field sound-radiation might

produce different sound-radiation. This is due to the different shape, different in-

ner impedance, and different reflection or diffraction characteristics. As a rigorous

assumption, the influence of these aspects will be neglected in the following con-

siderations. In fact, this assumption might hold as many instruments have a much

higher mechanical impedance than the sound field (maladjustment of impedances).

1.2 Musical Instrument Model

Whoever has played a musical instrument has experienced that the production

of musical sounds depends on many parameters. For most instruments, a huge

variation of the sound can be achieved by slightly changing parameters or config-

urations of the instrument. Essentially, several parameters have an impact on the

timbre, the pitch, or other properties of the sound, see Fig. 4.
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instrument configuration

excitation kind/signal

excitation point

... ...

instrument radiation
transfer functions

mechanical/acoustical
impact
(resonance/waveguide)

note control:
tone control:
playing technique:
other influence:

vocal folds/tone holes/keys/frets/harmonics/...
lip/pluck/bow/hit strength/position
damping/slapping/plucking/bowing/...
holding position/strength/impact on body

control system: musician

Figure 4: A generic musical instrument model illustrates that many parameters may
be involved in the process of sound production with musical instruments.

In order to get reproducible and clean measurements of the musical acoustics

of instruments, there are usually two classical strategies:

• “playing” musical instruments artificially, i.e. with robotic devices

• “playing” artificial musical instruments, i.e. physical models

From a musical point of view, one could easily argue against both approaches: well-

trained musicians might be better in playing musical instruments than scientists

playing the instrument artificially, or playing artificial musical instruments for the

purpose of a measurement4.

4The corollary that musicians are better in either playing musical instruments artificially, or

playing artificial musical instruments than scientists playing natural musical instruments might

be incorrect and fail :-).
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Instrumental sound plus radiation analysis and synthesis developed within in

this thesis can be summarized as to follow an alternative hypothesis:

Hypothesis

• Natural conditions for production of musical sounds with instruments de-

pend on many control quantities (playing techniques, time-variant instru-

ments, . . . ) thus technical mounting and excitation seems inappropriate,

and it is hard to provide all synthesis parameters properly.

• Synchronous recordings of multi-channel microphone array sound samples

with musicians can be considered being the most realistic mode of analyzing

sound and radiation.

1.3 Organization of Contents

In the second chapter of this thesis, acoustics in spherical coordinates, i.e. the

solutions of the Helmholtz equation (wave equation in the frequency domain), is

revisited as a mathematical/physical basis of all the following chapters. Advanced

readers may skip this section. However, some practical aspects about boundary

value problems and the description of sources are given.

The third chapter describes how the base solutions of the acoustics in spher-

ical coordinates can be manipulated in various ways. Above all, it shows how

canonic forms of coordinate transforms affect the spherical base-solutions, and

their implementation for the real-valued spherical harmonics is described as well.

Furthermore, hints on other manipulations like correlation, multiplication, trunca-

tion and its relevance, as well as important relations between circular and spherical

convolution are given.

As being essential for all kinds of discrete-space spherical boundaries, the fourth

chapter describes how to discretize the spherical surface using microphones or

loudspeakers for holographic analysis or holophonic synthesis. It provides a com-

prehensive overview of the literature about sampling and transform strategies on

spherical surfaces, which is the key to the decomposition of measured and recon-

structed fields into spherical base-solutions.

The fifth chapter elaborates on the practical capture and analysis of radiating

sound with spherical microphone arrays surrounding the source. Based on an

overview of existing works, a generic principle of acoustic sound-radiation and the

problem with the retrieval of the primal signal is given. As a holistic solution,

additive analysis and synthesis of partials, in sound and radiation, is given, based

on the total-power spectrogram gathered from all microphones. The chapter shows

10



the analyses of some musical instrument sounds and their graphical representation,

including two special cases exploiting spherical symmetries. It concludes with an

outlook on adaptive blind channel identification, and an outlook on parametric

sound-radiation models.

The sixth chapter presents the second practical contribution in this context:

The application of compact spherical loudspeaker arrays for sound-radiation syn-

thesis based on practical measurement data. Measurements with microphones

and laser-vibrometry are considered as suitable means within this chapter. Fur-

thermore, a model consisting of a solid sphere with individually vibrating discrete

spherical caps and a continuous spherical membrane are introduced and stud-

ied. The first model concludes with a complete electroacoustic system analysis,

illustrating the capacities of compact spherical loudspeaker arrays and directivity

control thereof. The latter model illustrates that, inside compact spherical loud-

speaker arrays, a common interior volume is beneficial. Moreover, efficient control

and radial beamforming are briefly discussed.

The seventh and last chapter gives a general conclusion and offers an outlook

on future work.
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Chapter II

ACOUSTICS IN SPHERICAL COORDINATES

This extended review of theoretical basics intends to provide a thorough under-

standing of the relations required to solve the soap-bubble problem. Hereby, this

chapter introduces fundamental mathematical descriptions, not only capable of

solving the sound-radiation capture and playback problem but also various other

problems that share a simple description in the spherical coordinate system. The

chapter aims to work as a detailed reference, the content of which is collected from

many sources in literature, in order to give a comprehensive overview of under-

lying principles and problems. Specifically, it shows the standard solution of the

wave-equation (in particular the Helmholtz equation) in spherical coordinates,

representations of point and plane-wave sources, as well as spherical boundary

value problems.

The wave-equation. The linear lossless wave equation for the time-domain

sound pressure p (r, t) and the Euler equation for the particle velocity v (r, t) can

be written as (see Franck Giron [Gir96], Earl G. Williams [Wil99], and Nail A.

Gumerov and Ramani Duraiswami [GD04]):

∆p (r, t) =
1

c2
p̈ (r, t) , (1)

ρ0 v̇ (r, t) = −∇ p (r, t) , (2)

where r is the position vector in space R3, t the time variable, c the speed of

sound, ∇ = ∂/∂r is the gradient, ∆ = ∇
T
∇ the Laplacian, (̇) = ∂/∂t the first

and (̈) = ∂2/∂t2 the second derivative with respect to time, and ρ0 the air density.

Within the Fourier expansion integral p (r, t) =
∫∞
−∞ p (r, ω) eiωt dω, the wave

equation simplifies to the Helmholtz equation. With 1
c2
p̈ (r, ω) = (iω)2

c2
p (r, ω)

and ρ0 v̇ (r, ω) = (iω) ρ0 v (r, ω), as well as the wave-number k = ω/c, Eqs. (1)

and (2) become:

(
∆ + k2

)
p (r, ω) = 0, (3)

ρ0c

i
k v (r, ω) = −∇p (r, ω) . (4)

The Helmholtz equation can be solved according to the definition of the gradient

and the Laplacian in the respective coordinate system. In Cartesian coordinates

∇ = (∂/∂x, ∂/∂y, ∂/∂z)T, and ∆ = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2.
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In the remainder of this thesis, Fourier coefficients are used to describe the

sound pressure p (r) = p (r, ω), and velocity v (r) = v (r, ω). We omit the fre-

quency variable ω for better readability.

2.1 Solving the Helmholtz-Equation in Spheri-

cal Coordinates

In order to determine the expression for the gradient ∇ and the Laplacian ∆ in

spherical coordinates, the relations between Cartesian and spherical coordinates

have to be considered

r =






x

y

z




 = r






cos(ϕ) sin(ϑ)

sin(ϕ) sin(ϑ)

cos(ϑ)




 , r̊ =






r

ϕ

ϑ




 =








√

x2 + y2 + z2

arctan
(

y

x

)

arctan

(√
x2+y2

z

)







. (5)

The spherical coordinates r, ϕ, and ϑ are called radius, azimuth and zenith angle,

respectively. The Laplacian for the spherical coordinate system is computed from

the chain of the partial derivatives ∇r = ∇r r̊
T

∇r̊, see Eq. (122), hence ∆ =

∇
T
r̊

(
∇r r̊

T
)T (

∇r r̊
T
)

∇r̊. Its definition yields [BSMM01]:

∆p (r) = ∆r p (r) + ∆ϕ p (r) + ∆ϑ p (r) (6)

=
1

r2

∂2r2p (r)

∂r2
+

1

r2 sin2(ϑ)

∂2p (r)

∂ϕ2
+

1

r2 sin(ϑ)

∂

∂ϑ

(

sin(ϑ)
∂p (r)

∂ϑ

)

.

A homogeneous solution of the Helmholtz equation ∆ p (r) + k2 p (r) = 0 is found

with the product ansatz and separation of variables [Wei08]:

p (r) = R(kr)Φ(ϕ)Θ(ϑ), (7)

1

p (r)
· | ∆ p (r) + k2 p (r) = 0 (8)

1

R(kr)
∆r R(kr) + k2 +

1

Φ(ϕ)
∆ϕ Φ(ϕ) +

1

Θ(ϑ)
∆ϑ Θ(ϑ) = 0 (9)

To separate the above into three differential equations in r, ϑ, and ϕ, the terms

dependent on the respective other two quantities are replaced by constants:







1
R(kr)

· 1
r2

∂2

∂r2 r
2R(kr) + k2

1
Φ(ϕ)
· 1

r2 sin2(ϑ)
∂2

∂ϕ2 Φ(ϕ)
1

Θ(ϑ)
· 1

r2 sin(ϑ)
∂
∂ϑ

(
sin(ϑ) ∂

∂ϑ
Θ(ϑ)

)







=







n(n+1)
r2

− m2

r2 sin2(ϑ)

−n(n+1)
r2 + m2

r2 sin2(ϑ)






. (10)

With the numbers n(n + 1) and m2 involved in the separation constants on the

right hand side of Eq. (10), the Helmholtz equation is split up into three differential

equations known from literature. Using positive integer indices n,m ∈ N0: m ≤ n
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provides complete harmonic sets of orthogonal solutions on the intervals 0 < r ≤
∞, 0 ≤ ϑ ≤ π and the periodic interval 0 ≤ ϕ ≤ 2π [Zio95]. In particular, these

are a spherical Bessel differential equation for R(kr), a linear differential equation

for Φ(ϕ), and an associated Legendre differential equation for Θ̃(cos(ϑ)) = Θ(ϑ),

and µ = cos(ϑ) cf. [Wei08, BSMM01]:







∂2

∂(kr)2
(kr)2R(kr) + [(kr)2 − n (n + 1)]R(kr)

∂2

∂ϕ2 Φ(ϕ) +m2Φ(ϕ)
∂
∂µ

[
1

1−µ2
∂
∂µ

Θ̃(µ)
]

+
[

n (n+ 1)− m2

1−µ2

]

Θ̃(µ)







=






0

0

0




 . (11)

The spherical Bessel and Neumann functions or the Hankel functions of the

first and second kind solve the spherical Bessel differential equation. The linear

differential equation is solved by sines and cosines, or complex exponentials, and

the Legendre differential equation is solved by Legendre functions of the first and

second kind. Symbolically, the complete set of solutions for the ansatz functions

in p(r) = R(kr)Φ(ϕ)Θ(ϑ) is written as

R(kr) = Rn(kr) =
{
jn(kr), yn(kr) | h(1)

n (kr), h(2)
n (kr)

}
, (12)

Φ(ϕ) = Φm(ϕ) =
{
sin(mϕ), cos(mϕ) | e±imϕ

}
, (13)

Θ(ϑ) = Θm
n (ϑ) = {Pm

n (µ), Qm
n (µ)} . (14)

2.1.1 Selection of Physical Solutions

In acoustics, the above solutions of the Helmholtz equation are used to describe

source-free sound fields. These source-free fields are separated from source-domains

by a spherical boundary, on which the sound pressure or particle velocity can be

described by convergent, non-singular angular solutions. Using both angular and

radial solutions, the whole source-free part is mathematically fully described due

to the known values on its boundary. The source-free field must not contain sin-

gularities, and is often referred to as the region of convergence.

Feasible angular solutions. For the dependency on µ, typically the Legendre

functions of the second kind (slashed-through below) are omitted due to their

singularities at µ = ±1, which render them useless for the description of spherical

boundary value problems1

Θm
n (ϑ) = {Pm

n (µ), ����Qm
n (µ)} . (15)

1Note that a slight variation of the radius towards the source-free part of the field must

make singularities vanish from the spherical boundary. This is impossible if already the angular

functions are singular. However, Legendre functions of the second kind have to be considered

when dealing with prolate/oblate spheroidal coordinates, cf. [Wik08a].
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In azimuth ϕ, the selection of either the complex exponential or the real val-

ued sine and cosine harmonics does not affect the applicability of the angu-

lar solutions. Alternatively, the real-valued version can be written in terms of

Chebyshev polynomials of the first Tm (cos (ϕ)) = cos (mϕ) and the second kind
√

1− cos2 (ϕ)Um−1 (cos (ϕ)) = sin (mϕ). A selection has to be made arbitrarily.

There are two options of excluding the functions with slash-through

Φm(ϕ) = {sin(mϕ), cos(mϕ) ����| e±imϕ} , or (16)

Φ̂m(ϕ) =
{

(((((((((((
sin(mϕ), cos(mϕ) | e±imϕ

}

. (17)

For convenience, the combination of both angular solutions is usually denoted by

a single symbol Y m
n , the spherical harmonic. Its dependency on both angles can

be expressed by a unit vector

θ =






cos(ϕ) sin(ϑ)

sin(ϕ) sin(ϑ)

cos(ϑ)




 . (18)

Usually the range for m is redefined as m ∈ Z : −n ≤ m ≤ n, which facilitates

the selection between the different azimuth harmonics, see Sec. 2.2. With a scalar

orthonormalization constant N
|m|
n , the real-valued spherical harmonics are written

as

Y m
n (θ) := N |m|

n Φm(ϕ) Θ|m|
n (ϑ). (19)

Feasible radial solutions. The selection of admissible radial functions is also

done by regarding the singularities of the functions involved. For interior boundary

value problems, the functions must not be singular inside a bounded domain kr <

kr0 →∞, which may reach infinite size. The only feasible solution is the spherical

Bessel function jn(kr) because it is regular for every kr ≥ 0.

Conversely, for exterior boundary value problems the functions may be singular

at kr < kr0 and must be non-singular at kr > kr0 > 0. This requirement is

met by all radial solutions. Using the radial impedance zr(kr) = p(kr)
vr(kr)

of the

free sound field, the acoustic power can be written as depending on the sound

pressure only w(kr) = p(kr) v∗r(kr) = |p(kr)|2/zr(kr). According to Sommerfeld’s

radiation condition, radiating functions must provide a positive and real-valued

power dissipation w(kr) in the far-field. This requires a purely resistive impedance

limkr→∞ z(kr) ∈ R+. In fact, the impedance approaches the impedance of the

one-dimensional plane-wave in the far-field limkr→∞ zr(kr) = ρ0c. With the Euler

equation iρ0c vr(kr) = − ∂
∂(kr)

p(kr), this identity directly yields the Sommerfeld

16



radiation condition2 [Wik08b]

lim
r→∞

(

− iρ0c p(kr)
∂

∂(kr)
p(kr)

!
= ρ0c

)

(20)

lim
r→∞

(
∂

∂(kr)
p (kr) + i p (kr)

)

= 0, (21)

With the above definitions, only the spherical Hankel function of the second kind

h
(2)
n (kr) fulfills the Sommerfeld radiation condition, see Appendix A. The set

of solutions for the interior boundary value problem (regular) and the exterior

boundary value problem (singular) is consequently reduced to the functions:

Rn(kr) =
{

jn(kr), (((((((((
yn(kr) | h(1)

n (kr), h(2)
n (kr)

}

. (22)

The spherical Bessel functions are real-valued and therefore represent harmonic

standing waves. Conversely, spherical Hankel functions of the second kind are

waves travelling towards kr → ∞ with increasing time t → ∞. As all h
(2)
n (kr)

share the expressions e−ikr, the expansion in eiωt and observation of a point of

constant phase on the wave −ikr + iωt
!
= const. demonstrates this behavior.

As the two radial functions have a Wronskian cf. [AW04, Wil99, BSMM01]

that is unequal to zero, they form a set of independent solutions:

W (kr) =

∣
∣
∣
∣
∣

jn(kr) h
(2)
n (kr)

j′n(kr) h
′(2)
n (kr)

∣
∣
∣
∣
∣
= jn(kr) h′(2)n (kr)− j′n(kr) h(2)

n (kr) =
1

i (kr)2 . (23)

2.2 Spherical Base-Solutions

The total solution is given as a sum of feasible solutions Eqs. (19) (22) of the

Helmholtz equation, cf. [Gir96, Wil99, GD04]:

p (kr, θ) =
∞∑

n=0

n∑

m=−n

[
bnmjn (kr) + cnmh

(2)
n (kr)

]
Y m

n (θ) , (24)

=
∞∑

n=0

n∑

m=−n

[bnmR
m
n (kr, θ) + cnmS

m
n (kr, θ)] ,

with Y m
n (θ) are the normalized spherical harmonics depending on the unit vector

θ. jn(kr) are the spherical Bessel functions, and h
(2)
n (kr) are the spherical Hankel

functions of the second kind depending on the product of wave-number and radius

kr. Equivalently, Rm
n (kr, θ) = jn (kr) Y m

n (θ) is the regular incident field solution,

and Sm
n (kr, θ) = h

(2)
n (kr)Y m

n (θ) is the singular radiating field solution, cf. [GD04].

bnm and cnm can be called the wave spectrum of the incident and radiating field,

respectively.

2Note that the Sommerfeld radiation condition will look different if e−iωt is used for harmonic

expansions with respect to frequency.
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Spherical harmonics. The spherical harmonics are base functions for a har-

monic decomposition of distributions on the two-dimensional sphere S2 (depicted

in Fig. 5). For example, in this sense the spherical harmonics can be applied to

describe the vibrational modes of a spherical surface. In contrast to the Fourier

kernel on the plane R
2, which equals eikxxeikyy, the complex-valued spherical har-

monics are defined as:

Ŷ m
n (θ) = N̂ |m|

n Φ̂m(ϕ) Θm
n (ϑ). (25)

The associated Legendre functions P
|m|
n (µ) determine the transform kernel in µ =

cos(ϑ) with the zenith angle ϑ, whereas in azimuth (=latitude) direction, we obtain

the Fourier-kernel eimϕ; the spatial frequency indices are n ∈ N0 andm ∈ Z : −n ≤
m ≤ n. N̂

|m|
n is a scalar normalization constant. Usually, the index n is referred

to as order and the index m as degree3. In many cases it is sufficient to use the

real-valued spherical harmonics:

Y m
n (θ) = N |m|

n P |m|
n (cos (ϑ)) ·







sin (mϕ) , for m < 0,

cos (mϕ) , for m ≥ 0.
(26)

With the normalization constant N
|m|
n the spherical harmonics describe an or-

Figure 5: The real-valued spherical harmonics for n = 0 . . . 4 as modes of vibration
on a spherical surface. The index n (order) counts the nodal circles, and |m| (degree)
counts those running through the north and south pole.

thonormal set of base functions. Orthonormality holds as the integral (inner

product) of two spherical harmonics over the sphere vanishes for different indices

3In many mathematics and physics textbooks the nomenclature is just the opposite. Most

literature on spatial audio and spherical harmonics, however, uses these labels. Thanks to Nail

A. Gumerov for clarification.
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and equals unity otherwise. Accordingly, the property is written using a product

of Kronecker deltas:
∫

S2

Y m
n (θ) Y m′

n′ (θ) dθ = δnn′ δmm′ . (27)

Using the orthonormality, a spherical harmonics transform integral of g (θ) can be

given:

g (θ) =

∞∑

n′=0

n′

∑

m′=−n′

γn′m′ Y m′

n′ (θ) | Y m
n (θ) ,

∫

S2

dθ

∫

S2

g (θ) Y m
n (θ) dθ =

∞∑

n′=0

n′

∑

m′=−n′

γn′m′

∫

S2

Y m′

n′ (θ) Y m
n (θ) dθ

∫

S2

g (θ) Y m
n (θ) dθ =

∞∑

n′=0

n′

∑

m′=−n′

γn′m′ δnn′δmm′

⇒
∫

S2

g (θ) Y m
n (θ) dθ =: γnm (28)

SHT {g (θ)} =: γnm.

Without truncation, the expansion of γnm in spherical harmonics is complete

∞∑

n=0

n∑

m=−n

γnm Y m
n (θ) = g (θ) , (29)

and fulfills the Parseval theorem
∫

S2

|g(θ)|2 dθ =
∞∑

n=0

n∑

m=−n

|γnm|2 . (30)

Normalization constant. The normalization constant Nm
n is defined as:

Nm
n = (−1)m

√

(2n+ 1) (2− δm)

4π

(n−m)!

(n+m)!
, (31)

wherein ()! is the factorial. In Appendix B a recurrent computation of Nm
n is given

for efficient numerical implementation.

Legendre functions. The associated Legendre functions can be determined by

the following recurrence relations for m ≥ 0, cf. [Wil99, GD04, Wei08]:

P 0
0 (µ) = 1 (32)

P n
n (µ) = − (2n− 1)P n−1

n−1 (µ)
√

1− µ2 ∀n ∈ Z : n > 0 (33)

P n−1
n (µ) = (2n− 1)µP n−1

n−1 (µ) ∀n ∈ Z : n > 0 (34)

(n−m)Pm
n (µ) = (2n− 1)µPm

n−1 (µ)− (n+m− 1)Pm
n−2 (µ) (35)

∀n,m ∈ Z : n ≥ 3; 0 ≤ m ≤ n− 2
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For negative m, the following relation holds [Wei08]:

P−m
n (µ) = (−1)m (n−m)!

(n+m)!
Pm

n (µ) . (36)

Usually, it is efficient and stable to use the recurrence relations on the numerical

values directly. For other, mathematical purposes, it might also be advantageous

to store the polynomial coefficients. Appendix B gives a structure to store these

coefficients, which can also be calculated using the recurrence relations.

Spherical Hankel-, Bessel-, and Neumann-functions. The spherical Bessel

function can be derived from the sinc(kr)-function sin(kr)/ (kr), [Wei08]:

jn (kr) = (−1)n (kr)n

(
d

kr d (kr)

)n
sin (kr)

kr
. (37)

Similarly, the spherical Neumann function is derived from − cos(kr)/ (kr)

yn (kr) = (−1)n+1 (kr)n

(
d

kr d (kr)

)n
cos (kr)

kr
. (38)

The spherical Hankel function h
(1)
n (kr) is a complex-valued composite of both

jn(kr) and yn(kr); h
(2)
n (kr) is its complex conjugate:

h(1)
n (kr) = jn (kr) + i yn (kr) , h(2)

n = h(1)∗
n (39)

All radial functions allow for a computation with the same recurrence rela-

tion. We use the generic term fn(kr) that can be replaced for each distinct radial

solution fn(kr) = {jn(kr), yn(kr), h
(1)
n (kr), h

(2)
n (kr)}, cf. Williams [Wil99]:

fn (kr) =
2n− 1

kr
fn−1 (kr)− fn−2 (kr) . (40)

The derivatives that are necessary to obtain the radial velocity vr (r) out of Eqs. (2)

and (24), are defined as, cf. [Wil99, GD04, Wei08]:

f ′
n (kr) = fn−1 (kr)− n+ 1

kr
fn (kr) . (41)

The spherical Bessel and Neumann functions and their derivatives are depicted

in Fig. 6. In practice, it is rather important to understand the asymptotic behavior

of the magnitudes of the spherical Hankel functions. Their so-called near- and far-

field regions, see Fig. 7, explain the properties of sound-radiation of higher-order

sources. In particular, higher-order components decay rapidly with increasing

radius within the near-field of a source. In the far-field of a source, however, all

orders share the same rate of radial decay. For instance at kr = 1, a fourth order

source has to be 40dB louder than a monopole to achieve the same sound pressure

at kr ≥ 8.
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Figure 6: Spherical Bessel- and Neumann functions and their derivatives are the radial
solution of the Helmholtz equation in the spherical coordinate system.

The asymptotic behavior of the near-field region of the Bessel function is also

helpful to describe source-free incident fields. Note that in Appendix C, it is shown

how to circumvent numerical errors in the proximity of kr = 0 for high orders.

For both functions we obtain (cf. [AW04])

∣
∣h(1,2)

n (kr)
∣
∣ ∝







(2n+ 1)!!/ (kr)n+1 , in the near-field kr ≪ 2

1/ (kr) , far-field n(n+1)
2
≪ kr

(42)

jn (kr) ∝ (kr)n /(2n+ 1)!!, in the near-field kr ≪
√

2(2n+ 3). (43)
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Figure 7: The magnitudes of the spherical Hankel functions and their derivatives
clearly indicate the near- and far-field ranges of the functions.
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2.3 Spherical Boundary Value Problems

Boundary value problems are used to describe the convergent, source-free part of

a sound field, given its boundary values. Spherical boundary value problems can

be split up into three main types of problems, enumerated below. In all cases,

assume the boundary values of the source-free field are known on one or two

spheres, concentric to the origin.

1. Interior Problem: The spherical sound pressure distri-

bution p (kr0, θ) (Dirichlet problem) or particle veloc-

ity distribution vr (kr0, θ) (Neumann problem) due to

sources outside r0 is given/known from measurements.

The interior free-field for r ≤ r0 is fully described math-

ematically and can be evaluated at every point4.

2. Exterior Problem: A Dirichlet boundary value condi-

tion p (kr0, θ) or a Neumann boundary value condition

vr (kr0, θ) due to sources inside r0 is given/known from

measurements. The exterior free-field for r ≥ r0 is fully

determined.

3. ,,Mixed“ Problems

(a) I: Two Dirichlet boundary conditions p (kr1, θ)

and p (kr2, θ), or two Neumann boundary condi-

tions vr (kr1, θ) and vr (kr2, θ) due to sources both

inside r2 and outside r1 are given/known from

measurements at two concentric spheres 0 < r1 <

r2. The free-field enclosed between the spheres is

fully determined4.

(b) II: Two Dirichlet boundary conditions p (kr2, θ)

and p (kr1, θ), or two Neumann boundary condi-

tions vr (kr2, θ) and vr (kr1, θ) due to sources be-

tween r1 and r2 are given/known from measure-

ments at two concentric spheres 0 < r1 < r2. The

two free-fields, one enclosed by the smaller sphere,

the other one outside the larger sphere, are fully

determined4.

4As demonstrated in the example later, interior problems, or problems with irradiating fields,

exhibit some exceptions. These are due to the zeros of the spherical Bessel functions jn(kr),

or its derivative j′n(kr) at specific frequencies. At those frequencies, the sound pressure or the

sound particle velocity, respectively, cannot produce nth order components of a field, alone.
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(c) III: A Dirichlet or Neumann boundary value is

given at a spherical surface with radius r0, which

can be due to an incident or radiating field. As-

sume scattering of the field by a medium having

another impedance z and lying inside, outside, or

at the radius r0, respectively. This impedance can

be either defined in the spherical harmonics or

space domain, depending on its modal or angular

characteristics.

Figure 8: Schematic sketch of four spherical boundary value problems. Red dots
represent sources of radiation and the grey particles obstacles to the sound field. The
(virtual) spherical surfaces are enclosing/excluding homogeneous acoustic fields.

Note that the spherical boundary conditions above are prototypes for obtain-

ing simple analytic solutions in terms of the spherical base-solutions. Arbitrary

boundary conditions can generally be more complicated, possibly involving mul-

tiple scattering, angle dependent impedances, non-concentric spheres, and non-

spherical geometries.

2.3.1 Spherical Wave Spectrum

For spherical boundary value problems, in which r is constant, it is useful to stay

within the domain of spherical harmonics, i.e., not to perform the expansion into

the angular variable θ. According to Williams [Wil99], this domain is called the
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spherical wave spectrum

ψm
n (kr) = SHT {p (kr, θ)} . (44)

The radial component νm
n (kr) of the sound particle velocity in the spherical wave

spectrum is related to the pressure by the Euler equation Eqs. (2), (4)

νm
n (kr) = SHT {vr (kr, θ)} ,

iρ0c k ν
m
n (kr) = − ∂

∂r
ψm

n (kr) = −k ∂

∂(kr)
ψm

n (kr) . (45)

The expansion of spherical wave spectra is straightforward, using:

p (kr, θ) =
∑

n,m

ψm
n (kr) Y m

n (θ) . (46)

Particularly, pressure and particle velocity spectra are obtained from Eqs. (24),

(44), and (45)

ψm
n (kr) = bnmjn (kr) + cnmh

(2)
n (kr) , (47)

νm
n (kr) =

i

ρ0c

[
bnmj

′
n (kr) + cnmh

′(2)
n (kr)

]
. (48)

In practice, spherical wave spectra are determined by a finite set of spatially dis-

crete probes from acoustic measurements of p(kr0, θl) or vr(kr0, θl) with a set of

microphones. To convert the measurement data into spherical wave spectra, dis-

crete spherical harmonic transforms (DSHT) have to be approximated under the

assumption of angularly band-limited distributions (see Sec. 4.2).

Considering the regular and singular solutions jn(kr) and h
(2)
n (kr) in Sec. 2.1.1,

one family of coefficients bnm and cnm must vanish for pure interior or exterior

problems:

1. Exterior problems: bnm ≡ 0.

2. Interior problems: cnm ≡ 0,

2.3.2 Spherical Boundary Value/Condition Examples

Example 1: Exterior problem, radiation into free-field. Assuming a

purely radiating field, the coefficients cnm of the exterior problem (singular so-

lution) are determined by the spherical wave spectrum of the sound pressure or

particle velocity at a given radius r0. For radiation capture, the microphone-

measurement surface must enclose a well-centered source that fulfills the require-

ment of an angular band-limitation. For playback, a set of loudspeakers provides
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the required sound field by inverse DSHT of the spherical wave spectrum. Given

ψm
n (kr0) in the frequency domain and setting bnm ≡ 0 in Eq. (47), we equate:

ψm
n (kr0) = cnmh

(2)
n (kr0) ,

cnm =
ψm

n (kr0)

h
(2)
n (kr0)

. (49)

The coefficients cnm allow for the evaluation of the sound field at every kr ≥ kr0.

Example 2: Interior problem, free incident field. Assuming a purely inci-

dent field without scattering, the coefficients bnm of the interior problem (regular

solution) can be determined by the spherical wave spectrum at a given surface kr0.

Once again the requirement of an angular band-limitation must be fulfilled. Given

or provided ψm
n (kr0), we obtain the complex-valued frequency domain distribution

by setting cnm ≡ 0 in Eq. (47):

ψm
n (kr0) = bnmjn (kr0) ,

bnm =
ψm

n (kr0)

jn (kr0)
. (50)

An application of this type of problem is higher-order Ambisonics (HOA) cap-

ture. For incident field capture, compact open-sphere configurations of micro-

phone arrays identify the spectrum ψm
n (kr0) by DSHT. In practice however, divi-

sions by the zeros of jn(kr) must be avoided. For HOA-playback, the spectrum

ψm
n (kr0) is provided computing a discretized version of a spherical source distri-

bution Sec. 2.4 with surrounding spherical loudspeaker arrays and inverse DSHT

(“HOA-Decoder”), which does not suffer from a division by zero problem.

Alternatively, if both spherical wave spectra ψm
n (kr0) as well as νm

n (kr0) are

known, the coefficients bnm can be found more robustly from a linear combination,

using arbitrary scalars α and β:

αψm
n (kr0) + βνm

n (kr0) = bnm

[

α jn (kr0) +
iβ

ρ0c
j′n (kr0)

]

,

bnm =
αψm

n (kr0) + βνm
n (kr0)

α jn (kr0) + iβ
ρ0c

j′n (kr0)
. (51)

Something similar is achieved, for instance, when applying cardioid microphones in

compact open-sphere microphone arrays, which can circumvent divisions by zero.

In this case, as given in the work [BR07] of Balmages and Rafaely, the coefficients

in the above equations are α = 1, and β = −ρ0c.

Another way to prevent divisions by zero uses spheres of different radii krl

and a modified DSHT, which considers the frequency dependence of the radial

functions, see [Raf08].
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Example 3a: Mixed problem I, separation of radiated from incident

field, given two spherical wave spectra. This approach has been shown in

Weinreich and Arnold’s work [WA80], by using measurements with a microphone

array arranged in concentric spheres. The spherical wave spectra of the sound pres-

sure ψm
n (kr1) and ψm

n (kr2) are given by DSHT based on discrete measurements.

From that, the coefficients bnm and cnm are found by elimination in Eq. (47):

ψm
n (kr1) = bnmjn (kr1) + cnmh

(2)
n (kr1),

ψm
n (kr2) = bnmjn (kr2) + cnmh

(2)
n (kr2),

resulting in:

bnm =
ψm

n (kr1)h
(2)
n (kr2)− ψm

n (kr2) h
(2)
n (kr1)

jn (kr1)h
(2)
n (kr2)− jn (kr2) h

(2)
n (kr1)

, (52)

cnm = − ψ
m
n (kr1) jn (kr2)− ψm

n (kr2) jn (kr1)

jn (kr1)h
(2)
n (kr2)− jn (kr2)h

(2)
n (kr1)

. (53)

Note that this approach will not work in the case of two zeros of the spherical

Bessel functions at both kr1 and kr2.

In that case, it would be better to measure the spherical wave spectrum of the

pressure and the radial particle velocity ψm
n (kr0) and νm

n (kr0) at the same radius

r0 = r1 = r2. The coefficients bnm and cnm are similarly determined as above:

ψm
n (kr0) = bnmjn (kr0) + cnmh

(2)
n (kr0),

νm
n (kr0) =

i

ρ0c

[
bnmj

′
n (kr0) + cnmh

′(2)
n (kr0)

]
,

yielding:

bnm =
ψm

n (kr0)h
′(2)
n (kr0)− ρ0c

i
νm

n (kr0) h
(2)
n (kr0)

jn (kr0) h
′(2)
n (kr0)− j′n (kr0)h

(2)
n (kr0)

, (54)

cnm = −ψ
m
n (kr0) j

′
n (kr0)− ρ0c

i
νm

n (kr0) jn (kr0)

jn (kr0)h
′(2)
n (kr0)− j′n (kr0)h

(2)
n (kr0)

. (55)

Using the Wronskian Eq. (23) the equations simplify to

bnm = (kr0)
2
[
iψm

n (kr0) h
′(2)
n (kr0)− ρ0c ν

m
n (kr0)h

(2)
n (kr0)

]
, (56)

cnm = −(kr0)
2
[
iψm

n (kr0) j
′
n (kr0) − ρ0c ν

m
n (kr0) jn (kr0)

]
. (57)

Example 3b: Mixed problem III, computation of radiated and incident

field, given a spherical wave spectrum and the radial impedance at the

same radius. In principle, there are different kinds of impedances related to

boundary conditions on spherical surfaces. In particular, we consider an acoustic

impedance and a mechanical admittance
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1. The modal/acoustic impedance of the free sound field is defined by

zm,ac
n (kr0) =

ψm,ac
n (kr0)

νm
n (kr0)

=







ρ0c

i
jn(kr0)
j′n(kr0)

, interior problem

ρ0c

i
h
(2)
n (kr0)

h
′(2)
n (kr0)

, exterior problem

zm,ac
n (kr0), other.

(58)

Note that this kind of impedance is not dependent on the angles but on

the indices n, m. The relation is convolutive: given a velocity distribution

on kr0, the pressure tends to be spatially smoothed. Modal vibrations of

spherical membranes may also show this kind of impedance.

2. The radial mechanical impedance distribution exhibits an angular depen-

dency

zme (θ) =
pme (θ)

vr (θ)

∣
∣
∣
∣
r=r0

. (59)

This relation is not convolutive but directly dependent on the angles.

In many cases it is necessary to have both impedances combined, e.g. for a vi-

brating mechanical structure coupled with the sound field. Conversion of the

mechanical impedance into spherical harmonics yields:

pme(θ) = zme(θ) vr(θ), (60)
∫

S2

dθ Y m
n (θ)

∣
∣
∣
∣

∑

n,m

ψm,me
n Y m

n (θ) =
∑

n′,m′

νm′

n′ zme(θ) Y m′

n′ (θ), (61)

ψm,me
n =

∑

n′,m′

νm′

n′

∫

S2

zme(θ) Y m
n (θ) Y m′

n′ (θ) dθ

︸ ︷︷ ︸

z
m′m,me

n′n

. (62)

In principle, both types of impedances interconnect via the velocity. Superposition

of the pressures due to the sound field ψm,ac
n (kr0) and due to the mechanical

structure ψm,me
n yields the total pressure on the boundary:

ψm,tot
n = ψm,ac

n (kr0) + ψm,me
n (63)

=

∞∑

n′=0

n′

∑

m′=−n′

(

zm′,ac
n′ (kr0)δn′nδm′m + zm′m,me

n′n

)

νm′

n′ =

∞∑

n′=0

n′

∑

m′=−n′

zm′m
n′n νm′

n′ .

From this, we can derive two useful equations that yield a sound pressure ψm,ac
n (kr)

due to a structural pressure distribution ψm,tot
n . The second equation considers the

tensor-inverse of the impedance zm′n
n′n , i.e. the admittance γm′m

n′n :

ψm,tot
n =

∞∑

n′=0

n′

∑

m′=−n′

zm′m
n′n

ψm′,ac
n′ (kr0)

zm′

n′ (kr0)
, (64)

ψm,ac
n (kr) = zm,ac

n (kr)

∞∑

n′=0

n′

∑

m′=−n′

γm′m
n′n ψm,tot

n . (65)
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With mechanical impedances that are spherically uniform, zme(θ) = const, the

total impedance is zmm′

n′n = zm
n δn′nδmm′ and can be expressed by adding a constant

to Eq. (58). For zero velocity boundaries (sound-hard) the impedance equals ∞,

in case of a ”pressure-release” sphere it becomes 0. The concept of the impedance

facilitates the computation of sound fields scattered by a spherical surface with

given impedance.

Given the impedance zm
n (kr0) and the spherical wave spectrum of the pressure,

the velocity can be computed with νm
n (kr0) = ψm

n (kr0) /z
m
n (kr0). Therefore, using

Eqs. (56), (57), the desired coefficients equal

bnm = (kr0)
2

[

ih′(2)n (kr0)−
ρ0c

zm
n (kr0)

h(2)
n (kr0)

]

ψm
n (kr0) , (66)

cnm = −(kr0)
2

[

ij′n (kr0) − ρ0c

zm
n (kr0)

jn (kr0)

]

ψm
n (kr0) . (67)

This type of solution is useful, for instance, when given a rigid sphere zm
n (kr0) =

∞, on which the sound pressure distribution has been identified (compact rigid

spherical microphone array). It is possible to compute the incident field, compen-

sating for the reflection on the surface. Possible multiple back-scattering between

the spherical surface and distant sources or obstacles is usually neglected.

2.4 Spherical Source Distributions

In some cases involving irradiating fields, spherical boundary value problems suffer

from division by zero Eq. (50), see also Footnote4. In holophonic problems, a

spherical source distribution can be employed to obtain a stable solution. In

contrast to spherical boundary value problems, a continuous distribution of sources

always excites the interior field without zeros as shown in this section.

Consider a continuous source strength distribution f(θ) that excites the inho-

mogeneous Helmholtz equation at the radius r0:

(
∆ + k2

)
p = −δ(r − r0)

r2
f(θ). (68)

This inhomogeneous differential equation is solved by a product ansatz, cf. [MF53]

p(kr, θ) = R(kr) Φ(θ). (69)

The angular part Φ(θ) is easily described by the spherical harmonics transform

pair of f(θ), cf. Eq. (28), and yields the modal source-strength [ZPF09]

φnm =

∫∫

S2

f(θ) Y m
n (θ) dθ, (70)

f(θ) =
∞∑

n=0

n∑

m=−n

φnm Y m
n (θ), (71)
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hence the radial solution gR(kr) of the Green’s function for one harmonic becomes

p(kr, θ) = gR(kr) φnm Y
m
n (θ). (72)

With the Laplace operator split into its radial and angular parts ∆ = ∆r +∆θ and

the eigenvalue eigenfunction pair of the angular part ∆θY
m
n (θ) = −n(n+1)

r2 Y m
n (θ),

the insertion of the ansatz results in an inhomogeneous, one-dimensional spherical

Bessel differential equation

[

∆r + k2 − n(n+ 1)

r2

]

gR(kr) = −δ(r − rl)

r2
(73)

Since we use two independent homogeneous functions jn(kr) and h
(2)
n (kr) as its

solution, the inhomogeneous radial part gR(kr) can be solved by variation of

parameters, cf. [Kre99, MF53]

gR(kr) = −jn(kr)

∫ ∞

r

h
(2)
n (kr)

W (kr)

δ(r − rl)

r2

dkr

k
− h(2)

n (kr)

∫ r

0

jn(kr)

W (kr)

δ(r − rl)

r2

dkr

k
,

(74)

wherein W (kr) is the Wronski-determinant Eq. (23) of the two functions. Even-

tually, the complete solution of the inhomogeneous problem, the spherical source

distribution, can be given as

p(kr, θ|φnm) = −ik

∞∑

n=0

n∑

m=−n

φnm Y m
n (θ)







h
(2)
n (krl) jn(kr), for r ≤ rl,

jn(krl) h
(2)
n (kr), for r ≥ rl.

(75)

This approach is particularly useful when describing point sources, Sec. 2.4.2,

or spherical arrangements thereof, as in higher-order Ambisonics, or other open

spherical loudspeaker arrays. Such arrangements are well-defined using the above

equation after sampling the surface function f(θ). The advantage of this formu-

lation is that the sound pressure and particle velocity are explicitly not restricted

by boundary conditions (Dirichlet/Neumann) between the sampling points as the

Helmholtz equation stays homogeneous there, cf. [ZPF09].

2.4.1 Spherical Source Distribution Problem

Assume a controllable spherical source distribution with the source strength dis-

tribution f(θ). The spherical wave spectrum of the upper branch of Eq. (75) is

related to the modal source-strength φnm and yields the modal coefficients

ψm
n (kr) = −ik jn(kr) h(2)

n (krl) φnm, (76)

⇒ bnm = −ik h(2)
n (krl) φnm. (77)
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It is easy to see that if the latter was replaced by

φnm =
h

(2)
n (kr̂l)

h
(2)
n (krl)

φ̂nm, (78)

the interior field due to sources at any radius r < r̂l can be simulated by the

sources at rl:

ψm
n (kr) = −ik jn(kr) �����h(2)

n (krl)
h

(2)
n (kr̂l)

�����
h

(2)
n (krl)

φ̂nm, (79)

which solves the holophonic higher-order Ambisonics (HOA) reproduction prob-

lem, cf. [ZPF09].

Furthermore, if bnm can be measured, e.g. using Eq. (51) or Eq. (66), the deter-

mination of a matching source distribution at φnm|rl
can be calculated assuming

rl:

φnm|rl
=

i

k h
(2)
n (krl)

bnm. (80)

This solves the holographic problem, in which sources at a given radius shall be

identified by measuring bnm.

2.4.2 Expansion of a Point-Source

The Green’s function of the Helmholtz equation in three dimensions is defined as

the inhomogeneous differential equation

(
∆ + k2

)
G (r, r0) = −δ (r − r0) . (81)

Its well-known solution is a point source in Cartesian coordinates [MF53]

G (r, r0) =
e−ik‖r−r0‖

4π ‖r − r0‖
(82)

that fulfills the radiation condition; the arguments r, r0 are commutable. Ei-

ther way, one argument specifies the point of observation and the other one the

location of the source, respectively. The Green’s function in terms of spherical

base-solutions is defined by [MF53, Wei08]

(
∆ + k2

)
G (r, r0) = −δ (r − r0)

r2
δ
(
1− θT

0 θ
)
, (83)

The angular term on the right hand side follows from the transform Eq. (28)

δ
(
1− θT

0 θ
)

=
∞∑

n=0

n∑

m=−n

Y m
n (θ) Y m

n (θ0) . (84)
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Due to Eq. (75), the spherical wave spectrum of the point source equals

SHT nm {G (r, r0)} = −ik Y m
n (θ0)







jn (kr) h
(2)
n (kr0) , for r ≤ r0,

h
(2)
n (kr) jn (kr0) , for r ≥ r0,

(85)

G (r, r0) =

∞∑

n=0

n∑

m=−n

SHT nm {G (r, r0)} Y m
n (θ) .

This representation is not only useful when describing the field of point sources,

but also represents an initial value for the computation of higher-order translation

operators.

Regular omnidirectional field. The imaginary part of the Green’s function

describes an omnidirectional standing wave that is regular at r = r0:

GR (r, r0) = −sin (k ‖r − r0‖)
4π ‖r − r0‖

= ℑ{G (r, r0)} (86)

Using Eq. (85), the shifted omnidirectional standing wave corresponds to:

SHT {GR (r, r0)} = ℑ
{
−ikjn (kr)h(2)

n (kr0) Y
m
n (θ0)

}

= −kjn (kr) jn (kr0)Y
m
n (θ0) . (87)

This describes a shifted regular field. It also represents a set of initial values for

the computation of higher-order translation operators.

2.4.3 Expansion of a Plane-Wave

An incident plane wave from the direction ϕ0, ϑ0 is described by

p (r,k0) = eikT
0 r, k0 = kθ0 = k






cos (ϕ0) sin (ϑ0)

sin (ϕ0) sin (ϑ0)

cos (ϑ0)




 . (88)

The spherical wave spectrum expansion of the incident plane wave eikT
0 r can be

obtained by using the Green’s function Eq. (85), letting r0 ≫ r, see Arfken [AW04],

Fitzpatrick [Fit02], since

lim
r0≫r
‖r − r0‖ = lim

r0≫r

√

r2
0 + r2 − 2rT

0 r (89)

= lim
r0≫r

[

r0 +
1

1! 2 r0

(
r2 − 2rT

0 r
)
− . . .

]

= r0 − θT
0 r ≈ r0,

⇒ lim
r0≫r

e−ik‖r−r0‖

‖r − r0‖
=

e−ikr0

4πr0
. (90)
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So with Eq. (85) and the far-field approximation of the spherical Hankel functions

Eq. (350) limr0→∞ h
(2)
n (kr0) = in+1e−ikr0

kr0
, the plane-wave yields

p (r,k0) =
4πr0
e−ikr0

k

i

∞∑

n=0

n∑

m=−n

jn (kr)Y m
n (θ)

in+1e−ikr0

kr0
Y m

n (θ0) .

Consequently, its spherical wave spectrum becomes

SHT nm {p (r,k0)} = 4π in jn (kr) Y m
n (θ0) , (91)

p (r,k0) =

∞∑

n=0

n∑

m=−n

SHT nm {p (r,k0)} Y m
n (θ) .

2.4.4 Expansion of a Line-Source

According to Morse and Feshbach [MF53], the following relation between the

solution in the two-dimensional circular cylindrical coordinates and the spherical

base-solutions holds:

SHT nm

{

Jm (kr sin ϑ)

(

cos (mϕ)

sin (mϕ)

)}

=
∞∑

n=m

4π

in−m
Y m

n (ϕ, π/2) jn (kr) , (92)

SHT nm

{

H(2)
m (kr sin ϑ)

(

cos (mϕ)

sin (mϕ)

)}

=
∞∑

n=m

4π

in−m
Y m

n (ϕ, π/2) h(2)
n (kr) . (93)

Therefore it is possible to turn a two dimensional problem (e.g. Ambisonics) into

a three dimensional spherical problem. For example a line-source in circular cylin-

drical coordinates with ρ = r sin(ϑ)

GL (r, ρ0, ϕ0) =
π

i
cos [m (ϕ− ϕ0)]







Jm (kρ) H
(2)
m (kρ0) , ρ ≤ ρ0,

H
(2)
m (kρ) Jm (kρ0) ρ ≥ ρ0,

(94)

is equivalent to, using Eqs. (92)(93)(94),

SHT nm {GL (r, ρ0, ϕ0)} =
4π2

in−m+1







jn (kr) H
(2)
m (kρ0) Y

m
n (ϕ0, π/2) , r ≤ ρ0,

h
(2)
n (kr) Jm (kρ0) Y

m
n (ϕ0, π/2) , r ≫ ρ0,

(95)

however with poor convergence for r ≥ ρ0.
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2.5 Acoustic Holography and Holophony with

Spherical Arrays

This section gives a brief naming convention to some important problems that are

solved by spherical boundary value problems or using spherical source distribu-

tions. Essentially, radiation (exterior problem) or irradiation (interior problem) of

sound can be captured by microphones and predicted at other locations. Or just

as well, both radiation and irradiation can be reproduced by loudspeakers.

Spherical acoustic holography means the measurement of an acoustic field

along a spherical surface for the purpose of evaluation at other radii. This can be

achieved by suitable arrangements of microphones. If properly done, the measured

part of the field will be used to compute either the spherical wave spectrum of

the exterior problem Eq. (49), or the modal source strength of a surrounding

spherical source distribution Eq. (80). Insertion into the spherical base-solutions

allows for calculation of the field at other radii. There are two types of dedicated

arrangements for capture

• surrounding spherical microphone arrays for the identification of radiation

(exterior problems)

• compact spherical microphone arrays for the identification of irradiation

(HOA recording)

Spherical acoustic holophony means the synthesis or playback of an acous-

tic field matching outside or within the spherical reproduction facility. Suitable

arrangements of loudspeakers can be used to achieve this. If properly done, the

spherical wave spectrum of an exterior problem or the modal source strength of a

surrounding spherical source distribution will be generated. There are two main

types of dedicated playback arrangements

• compact spherical loudspeaker arrays for reproduction of radiation (exterior

problem)

• surrounding spherical loudspeaker arrays for reproduction of irradiation (HOA

playback)

Chap. 4 is the key to practical implementations with discrete spherical arrays.

Partly, this concept is summarized in [Zot09].
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Chapter III

MANIPULATION OF SPHERICAL BASE

SOLUTIONS

The base solutions of the Helmholtz equation, as introduced in the previous chap-

ter Chap. 2, are capable of describing entire homogeneous incident and radiating

sound fields even if only spherical wave spectra are known on one or more surfaces.

What has not been told so far is how to transform these spherical base-solutions to

other, new coordinate origins. While this is fairly easy in Cartesian coordinates, a

transform of coordinates requires special attention using spherical base-solutions.

This chapter presents a derivation of the transform methods using the litera-

ture on the addition theorem for the scalar wave-equation. The novel contribution

in this derivation is the usage of real-valued matrices to represent the spheri-

cal harmonics. For practical reasons, full transforms (translation and rotation)

are decomposed into simple transform steps. The derivation yields the computa-

tion of each of these simple transform steps for base-solutions using either real-

or complex-valued spherical harmonics. Finally, approaches and literature about

other manipulation techniques such as correlation, multiplication, and spherical

convolution are provided. Another novel contribution for spherical convolution

is the recurrent relation between spherical and cylindrical convolution. This al-

lows to directly transform circular harmonics windows known from discrete-time

windowing-techniques to spherical convolution kernels.

3.1 Coordinate Transforms of Spherical Base

Solutions (Addition Theorem for the Scalar

Wave Equation)

In the following section, rotation and translation of the reference coordinate system

r to a new one by a 3× 3 rotation matrix Q and an offset d is given by

r′ = Qr + d. (96)

Interrelations between spherical base-solutions defined on the two distinct coordi-

nate systems can be established and shall be explored here. The principle behind

this technique is the so called addition theorem for the scalar wave equation de-

scribed in Chew [Che92], Gumerov and Duraiswami [GD01, GD03, GD04]. The
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derivations here follow strictly the outlined steps given in the references. As a

novel contribution, recurrence relations for real-valued spherical harmonics are

directly obtained, here.

Rotation of the Cartesian coordinates. A rotation Q of the Cartesian coor-

dinates can be written as 3×3 matrix, which is determined by the three rotational

degrees of freedom. Q is often decomposed into a rotation Qz(γ) around the z-

axis, followed by a rotation around the y-axis Qy(β), and a third rotation around

the z-axis Qz(α), cf. Fig. 9 and e.g. [GD01, GD03, GD04]. This zyz-rotation is

for Cartesian coordinates:

r′ = Q(α, β, γ) r, (97)

Q(α, β, γ) = Qz(α)Qy(β)Qz(γ), (98)

Qz(α) =






cos(α) − sin(α) 0

sin(α) cos(α) 0

0 0 1




 , Qy(β) =






cos(β) 0 sin(β)

0 1 0

− sin(β) 0 cos(β)




 .

The inverse rotation is obtained by exchanging the order and signs of the angles

Q−1(α, β, γ) = Q(−γ,−β,−α).

x
y

z

y

z

y

z

y

z

x x x

Qz(χ) Qy(ϑ) Qz(ϕ)

Figure 9: zyz rotation.

Translation of the Cartesian coordinates. Shifting the Cartesian coordi-

nates by an offset vector d is easily described as an addition of the 3× 1 compo-

nents. In terms of the spherical base-solutions, translation is more complicated as

a shift of the origin affects both angular and radial coordinates. Therefore, it may

theoretically require all spherical base-solutions up to infinite order to represent a

single shifted base-solution.
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Coordinate transforms and spherical base-solutions. Basically, the spher-

ical base-solutions for either regular incident fields R̂m
n (r) or singular radiating

fields Ŝm
n (r) can be given as

R̂m
n (r) = jn (kr) Ŷ m

n (θ), (99)

Ŝm
n (r) = h(2)

n (kr) Ŷ m
n (θ), (100)

The formulations here express the complex-valued spherical harmonics in terms

of a 2 × 2 real-valued matrix Ŷ m
n (θ). The underlying intention is to make the

relation to the real-valued spherical harmonics Eq. (183) more obvious while still

keeping the benefits of complex-valued calculations using the matrix notation. In

doing so, the complex-valued nature of the angular solutions will be kept strictly

separate from the complex values of the radial solutions

Φ̂m (ϕ) =

(

cos (mϕ) − sin (mϕ)

sin (mϕ) cos (mϕ)

)

=
(

Φ̂1(ϕ)
)m

, (101)

Ŷ m
n (θ) = N̂m

n Pm
n (µ) Φ̂m(ϕ). (102)

The indices are defined for the range n,m ∈ N0 : m ≤ n. Free sound fields

(complex-valued) of either type (incident/radiating) can be entirely described as

infinite sum over the base solutions weighted with the coefficients bnm and cnm:

bnm =

(

b
(real)
nm −b(imag)

nm

b
(imag)
nm b

(real)
nm

)

, cnm =

(

c
(real)
nm −c(imag)

nm

c
(imag)
nm c

(real)
nm

)

, (103)

pR =

(

p
(real)
R −p(imag)

R

p
(imag)
R p

(real)
R

)

, pS =

(

p
(real)
S −p(imag)

S

p
(imag)
S p

(real)
S

)

ei∠h
(2)
n (kr), (104)

pR(r) =

∞∑

n

n∑

m=0

bnm R̂
m
n (r), (105)

pS(r) =

∞∑

n

n∑

m=0

cnm Ŝ
m
n (r). (106)

For the coordinate transform problem, the distinct spherical base-solutions

shall be denoted more generically as F̂m
n (r) =

{

R̂m
n (r)|Ŝm

n (r)
}

and Êm
n (r′) =

{

R̂m
n (r′)|Ŝm

n (r′)
}

, as given in [GD01, GD03, GD04]. This allows for freely se-

lecting the appropriate type of solution according to the situation prevailing in

the respective coordinate system. Consequently, the sound pressure in the two

different coordinate systems r and r′ equals

pF (r) =
∞∑

n

n∑

m=0

fnm F̂
m
n (r), (107)

pE(r′) =
∞∑

n

n∑

m=0

enm Ê
m
n (r′). (108)
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The transform between both coordinate systems can be written as

pF (r) =

∫

R3

T (r′, r) pE (r′) dr′. (109)

The transform operator can be easily transformed into the spherical harmon-

ics with respect to the two different coordinate systems r and r′. Due to the

orthogonality of the base solutions in the respective coordinate systems using
∫
Êmx

nx
(r′)Ŷ m

n (θ′)dθ′ = δnxnδmxmÊ
mx
nx

(r′), the above equation reduces to

F̂m
n (r) =

∞∑

n′=0

n′

∑

m′=0

T̂m′m
n′n (Q,d) Êm′

n′ (r′) . (110)

The operator T̂m′m
n′n (Q,d) transforms the solution Êm′

n′ (r′) into a solution

F̂m
n (r). In other words, the base solution F̂m

n (r) in the coordinate system r

can always be expressed as linear combination of base solutions Êm′

n′ (r′) in the

coordinate system r′ = Qr+d using the weights T̂m′m
n′n (Q,d). Eq. (110) is there-

fore called addition theorem for the scalar wave equation. The following sections

show how the coefficients T̂m′m
n′n (Q,d) can be determined.

3.1.1 Gradient and its Commutativity with Transforms

The ∇-operator (gradient) is defined as:

∇ =






∂
∂x
∂
∂y

∂
∂z




 . (111)

Applying the chain rule to obtain the gradient in transformed coordinates yields

∇r =
(
∇r r

′T) ∇r′ = ∇r

(
rTQT + dT

)
∇r′ = QT∇r′ (112)

in Cartesian coordinates. It must be invariant to a change of the coordinate system

T (r, r′)

∇rp (r) =

∫

R3

T (r′, r) QT
∇r′p (r′) dr′. (113)

Since we define the spherical base-solutions having the dimensions 2 × 2, the

gradient must be re-written to 6 × 2; we use bdiag to denote a block diagonal
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matrix:

∇r =






I ∂/∂x

I ∂/∂y

I ∂/∂z




 (114)

∇rF̂
m
n (r) =

∞∑

n′=0

n′

∑

m′=0






T̂m′m
n′n (Q,d) 0 0

0 T̂m′m
n′n (Q,d) 0

0 0 T̂m′m
n′n (Q,d)




 QT

6×6 ∇r′Êm′

n′ (r′) ,

∇rF̂
m
n (r) =

∞∑

n′=0

n′

∑

m′=0

bdiag
{

T̂m′m
n′n (Q,d)

}

QT
6×6 ∇r′ Êm′

n′ (r′) . (115)

As shown later in Eq. (149), the gradient of the spherical base-solutions equals a

linear combination of two or more spherical base-solutions in the same coordinate

system. The introduction of alternative orthonormal coordinates r̂ Eq. (124)

instead of r simplifies the expressions to yield

∇r̂F̂
m
n (r̂) =

∞∑

n′=0

∞∑

m′=−n′

Ĝm′m
n′n F̂m′

n′ (r̂), (116)

Ĝm′m
n′n =






ĝ
(x̂),m′m

n′n I

ĝ
(ŷ),m′m

n′n I

ĝ
(ẑ),m′m

n′n I




 . (117)

Coordinate transform and gradient must be commutative. A spherical

base-function in one coordinate system is equivalent to a linear combination of

the spherical base-functions in another coordinate system, using the coefficients

T̂m′n
n′n (Q,d). Not all the coefficients are easy to compute, however some are analyti-

cally known. As will be shown below, the gradient also equals a linear combination

of base solutions with coefficients Ĝm′m
n′n that are well-defined. In general, the gra-

dient in a shifted coordinate system must lead to the same result as the gradient

in the original coordinate system, evaluated at the shifted points. Therefore both

operations must be commutative. The commutative law between the two matrix-

type operations is used to obtain interrelations between elements of the transform

operator T̂m′m
n′n (Q,d), cf. [Che92, GD01, GD03, GD04].

Generally, there must be equivalence between the gradient in different coor-

dinate systems. Starting from the addition theorem Eq. (110) and inserting the
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gradient Eq. (116) on both sides as well as the addition theorem on the left yields:

∇r̂ F̂
m
n (r̂) =

∑

n1,m1

bdiag
{

T̂m1m
n1n

}

QT
6×6 ∇r̂′ Êm1

n1
(r̂′) (118)

∑

n3,m3

Ĝm3m
n3n F̂m3

n3
(r̂) =

∑

n1,m1

∑

n2,m2

bdiag
{

T̂m1n
n1n

}

QT
6×6 Ĝ

m2m1
n2n1

Êm2
n2

(r̂′)

∑

n3,m3

∑

n4,m4

Ĝm3m
n3n T̂m4m3

n4n3
Êm4

n4
(r̂′) =

∑

n1,m1

∑

n2,m2

bdiag
{

T̂m1n
n1n

}

QT
6×6 Ĝ

m2m1
n2n1

Êm2
n2

(r̂′).

Exploiting the orthonormality of the spherical base-functions Êm′

n′ (r̂′) within the

same reference frame r̂′ using
∫
Êm′

n′ (r̂′)Ŷ m
n (θ̂′)dθ̂′ = δnn′δmm′Êm

n (r̂′) yields:

∑

n3,m3

Ĝn3m
n3n T̂

m′m3

n′n3
Êm′

n′ (r̂′) =
∑

n1,m1

bdiag
{

T̂m1m
n1n

}

QT
6×6 Ĝ

m′m1

n′m1
Êm′

n′ (r̂′), (119)

∑

n2,m2

Ĝn2m
n2n T̂

m′m2

n′n2
=
∑

n1,m1

bdiag
{

T̂m1m
n1n

}

QT
6×6 Ĝ

m′m1

n′m1
. (120)

Since Ĝm′n
n′n is very sparse, the last equation yields simple recurrence relations be-

tween the entries in the transform matrix T̂m′m
n′n (Q,d). These recurrence relations

provide computational means to derive higher-order transform relations from the

known ones (spherical harmonics addition theorem, Green’s functions).

3.1.2 Deriving the Gradient on Spherical Base-Solutions

Expressing the gradient as combination of base functions. The conver-

sion between Cartesian and spherical coordinates is important for the derivation

of the gradient (µ = cos(ϑ)):

r̊ =






kr

ϕ

µ




 =






k
√

x2 + y2 + z2

arctan (y/x)

z/r




 . (121)
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In preparation to define the gradient with respect to the spherical coordinates r̊,

the partial derivatives for the chain rule using Eq. (121) equal

1

k
∇r = ∇r r̊

T∇r̊

=






∂kr/∂x ∂ϕ/∂x ∂µ/∂x

∂kr/∂y ∂ϕ/∂y ∂µ/∂y

∂kr/∂z ∂ϕ/∂z ∂µ/∂z











∂/∂kr

∂/∂ϕ

∂/∂µ




 (122)

=








cos (ϕ)
√

1− µ2 − sin(ϕ)

kr
√

1−µ2
− µ

kr
cos (ϕ)

√

1− µ2

sin (ϕ)
√

1− µ2 cos(ϕ)

kr
√

1−µ2
− µ

kr
sin (ϕ)

√

1− µ2

µ 0 1−µ2

kr













∂/∂kr

∂/∂ϕ

∂/∂µ






=






Φ̂1(ϕ)
0

0

0 0 1












√

1− µ2 0 − µ

kr

√

1− µ2

0 1

kr
√

1−µ2
0

µ 0 1−µ2

kr












∂
∂kr
∂

∂ϕ

∂
∂µ




 .

We observe that a rotation matrix Φ̂1(ϕ), i.e. the first degree azimuth solution, is

part of the partial derivatives. Since the rotation structurally relates the deriva-

tives with respect to x and y it cannot usefully yield an application of the addition

theorem, cf. Eq. (101). In the next paragraph, the usual modification of the coor-

dinate system [Che92, GD01, GD03, GD04] is introduced that allows us to employ

this theorem.

A new coordinate system incorporating the trigonometric addition the-

orem. In terms of the azimuthal solutions, the following redefinition of the co-

ordinates is beneficial (note that the matrix L represents the imaginary constant

i =
√
−1 in real-valued matrix notation, and the factor 1/

√
2 provides normaliza-

tion r̂Tr̂ = r2 I):

I =

(

1 0

0 1

)

, L =

(

0 −1

1 0

)

, L L = −I (123)

r̂ =






x̂

ŷ

ẑ




 =

1√
2






xI + yL

xI − yL
zI
√

2




 , x̂ = ŷT. (124)
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For a coordinate transform r′ = Qr+d withQ =






qxx′ qyx′ qzx′

qxy′ qyy′ qzy′

qxz′ qyz′ qzz′




, d =






dx

qy

qz




,

the following redefinitions are necessary:

r̂′ = Q̂ r̂ + d̂, d̂ =
1√
2






dxI + dyL

dxI − dyL

dzI
√

2




 , Q̂ =






Qx̂x̂′ Qŷx̂′ Qẑx̂′

Qx̂ŷ′ Qŷŷ′ Qẑŷ′

Qx̂ẑ′ Qŷẑ′ Qẑẑ′




 , (125)

Q̂ =
1

2






(qxx′ + qyy′)I − (qyx′ − qxy′)L (qxx′ − qyy′)I + (qyx′ + qxy′)L
√

2 (qzx′I + qzy′L)

(qxx′ − qyy′)I − (qyx′ + qxy′)L (qxx′ + qyy′)I + (qyx′ − qxy′)L
√

2 (qzx′I − qzy′L)√
2 (qxz′I − qyz′L)

√
2 (qxz′I + qyz′L) 2qzz′I




 .

Gradient in the new coordinate system. The redefined gradient and the

chain rule yield

∇r̂ =






(I∂/∂x +L∂/∂y)/
√

2

(I∂/∂x −L∂/∂y)/
√

2

I∂/∂z




 =






∇x̂

∇ŷ

∇ẑ




 , ∇r̂ r̂

T = I6×6. (126)

∇r̂ = ∇r̂ r̂
′ T

∇r̂′ = Q̂T
∇r̂′ . (127)

It becomes clear in the next equations that, within the new coordinate system,

the rotation matrix Φ̂m(ϕ) in Eq. (122) increments/decrements the degrees of

the azimuth harmonics. In addition, another useful property will be taken into

account by expanding I∂/∂ϕ = −L L ∂/∂ϕ:

mΦ̂m (ϕ) = −L ∂

∂ϕ
Φ̂m (ϕ) . (128)

With the partial derivatives in Eq. (122), the operators 1
k
∇x̂, 1

k
∇ŷ, and 1

k
∇ẑ yield

1

k
∇x̂ =

1

k

(

∇x̂ kr, L∇x̂ϕ, ∇x̂ µ
)






I∂/∂kr

−L∂/∂ϕ
I∂/∂µ




 , (129)

=
1

kr
√

1− µ2
√

2
Φ̂1(ϕ)

[

(1− µ2)I

(

kr
∂

∂kr
− µ ∂

∂µ

)

+L
∂

∂ϕ

]

,

1

k
∇ŷ =

1

k
∇

T
x̂ =

1

kr
√

1− µ2
√

2

[

(1− µ2)I

(

kr
∂

∂kr
− µ ∂

∂µ

)

−L ∂

∂ϕ

]

Φ̂T
1 (ϕ),

(130)

1

k
∇ẑ = I

(

µ
∂

∂kr
+

1− µ2

kr

∂

∂µ

)

. (131)
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As given in [GD01, GD03], the above operators are simplified by using recurrence

relations of the spherical base-solutions involving the derivatives.

Inserting fn(kr)Pm
n (µ) for the gradient in ẑ

1

k

∂

∂z
fn(kr)Pm

n (µ) =

[

µPm
n (µ)

∂

∂kr
fn (kr) +

fn(kr)

kr
(1− µ2)

∂

∂µ
Pm

n (µ)

]

,

the following recurrence relations are used

µPm
n (µ) =

n+m

2n+ 1
Pm

n−1(µ) +
(n−m+ 1)

2n + 1
Pm

n+1(µ) (132)

(1− µ2)
∂

∂µ
Pm

n (µ) =
(n+ 1)(n+m)

2n+ 1
Pm

n−1(µ)− n(n−m+ 1)

2n+ 1
Pm

n+1(µ) (133)

(n+ 1)fn(kr)

kr
= fn−1(kr)−

∂

∂kr
fn(kr) (134)

nfn(kr)

kr
= fn+1(kr) +

∂

∂kr
fn(kr), (135)

and it remains

1

k

∂

∂z
fn(kr)Pm

n−1(µ) =

[
n +m

2n+ 1
fn−1(kr)P

m
n−1(µ)− n−m+ 1

2n + 1
fn+1(kr)P

m
n+1(µ)

]

,

1

k
∇ẑF

m
n (r̂) =

N̂m
n (n+m)

Nm
n−1(2n+ 1)

Fm
n−1 (r̂)− N̂m

n (n−m+ 1)

Nm
n+1(2n+ 1)

Fm
n+1 (r̂) . (136)

Note that for n = 0 the expression Fm
n−1 (r̂) vanishes.

Additionally, the operators 1
k
∇x̂ and 1

k
∇ŷ = 1

k
∇

T
x̂ are simplified by recurrence

relations given in [GD01, GD03]

√
2

N̂m
n k

∇x̂F̂
m
n (r̂) = Φ̂1(ϕ) ·

[
√

1− µ2I
∂

∂kr
− 1

kr

(

µ
√

1− µ2I
∂

∂µ
+

1
√

1− µ2
L
∂

∂ϕ

)]

·

Φ̂m(ϕ)Pm
n (µ)fn(kr),

√
2

N̂m
n k

∇ŷF̂
m
n (r̂) = Φ̂T

1 (ϕ)·
[
√

1− µ2I
∂

∂kr
− 1

kr

(

µ
√

1− µ2I
∂

∂µ
− 1
√

1− µ2
L
∂

∂ϕ

)]

·

Φ̂m(ϕ)Pm
n (µ)fn(kr).

Utilizing the addition theorem of sine and cosine, as well as the recurrence relations
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of the Legendre polynomials [GD01, GD03] and the radial functions (134),(135)

Φ̂m+1 (ϕ) = Φ̂1(ϕ) Φ̂m (ϕ) , (137)

Φ̂m−1 (ϕ) = Φ̂T
1 (ϕ) Φ̂m (ϕ) , (138)

√

1− µ2Pm
n (µ) =

1

2n+ 1
Pm+1

n−1 (µ)− 1

2n+ 1
Pm+1

n+1 (µ),

(139)

√

1− µ2Pm
n (µ) =

(n−m+ 1)(n−m+ 2)

2n + 1
Pm−1

n−1 (µ)+

(n +m− 1)(n+m)

2n + 1
Pm−1

n+1 (µ),

(140)

−µ
√

1− µ2
∂

∂µ
Pm

n (µ)− m
√

1− µ2
Pm

n (µ) = −(n +m− 1)(n+m)

2n+ 1
Pm−1

n−1 (µ)+

(n−m+ 1)(n−m+ 2)

2n+ 1
Pm+1

n+1 (µ),

(141)

−µ
√

1− µ2
∂

∂µ
Pm

n (µ) +
m

√

1− µ2
Pm

n (µ) = −(n + 1)(n+m− 1)(n+m)

2n+ 1
Pm−1

n−1 (µ)−

n(n−m+ 1)(n−m+ 2)

2n+ 1
Pm−1

n+1 (µ),

(142)

the equations remain

√
2

N̂m
n k

∇x̂F̂
m
n (r̂) = Φ̂m+1(ϕ)·

[
1

2n+ 1
Pm+1

n−1 (µ)fn−1(kr) +
1

2n+ 1
Pm+1

n+1 (µ)fn+1(kr)

]

,

√
2

N̂m
n k

∇ŷF̂
m
n (r̂) = Φ̂m−1(ϕ) ·

[

−(n +m− 1)(n+m)

2n+ 1
Pm−1

n−1 (µ)fn−1(kr)

−(n−m+ 1)(n−m+ 2)

2n+ 1
Pm−1

n+1 (µ)fn+1(kr)

]

.

These are for fully normalized base solutions:

√
2

k
∇x̂F̂

m
n (r̂) =

N̂m
n

Nm+1
n−1 (2n+ 1)

F̂m+1
n−1 (r̂) +

N̂m
n

Nm+1
n+1 (2n+ 1)

F̂m+1
n+1 (r̂), (143)

√
2

k
∇ŷF̂

m
n (r̂) = −N̂

m
n (n +m− 1)(n+m)

Nm−1
n−1 (2n+ 1)

F̂m−1
n−1 (r̂)− N̂m

n (n−m+ 1)(n−m+ 2)

Nm−1
n+1 (2n+ 1)

F̂m−1
n+1 (r̂).

(144)

The constants involved can be gathered into new expressions, such as given in [GD01,
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GD03, GD04]

am
n =







√
(n−|m|+1)(n+|m|+1)

(2n+1)(2n+3)
, for n ≥ 0 and −n ≤ m ≤ n

0, else.
(145)

bmn =







√
(n−m−1)(n−m)
(2n−1)(2n+1)

, for n ≥ 0 and 0 ≤ m ≤ n

−
√

(n−m−1)(n−m)
(2n−1)(2n+1)

, for n ≥ 0 and −n ≤ m < 0

0, else.

(146)

In order to simplify, we use the constants and Kronecker deltas to re-write the

theorems representing the gradient with its components:

1

k
∇F̂m

n (r̂) =

∞∑

n′=0

n′

∑

m′=−n′

Ĝm′m
n′n F̂

m′

n′ (r̂), (147)

Ĝm′m
n′n =








1√
2
I
[

−bmn δm′,m+1
n′,n−1 + b−m−1

n+1 δm′,m+1
n′,n+1

]

1√
2
I
[

−b−m
n δm′,m−1

n′,n−1 + bm−1
n+1 δ

m′,m−1
n′,n+1

]

I
[

am
n−1 δ

m′,m
n′,n−1 − am

n δ
m′,m
n′,n+1

]








(148)

=








1√
2
I
[

−bm′−1
n′+1 δ

m′−1,m
n′+1,n + b−m′

n′ δm′−1,m
n′−1,n

]

1√
2
I
[

−b−m′−1
n′+1 δm′+1,m

n′+1,n + bm
′

n′ δ
m′+1,m
n′−1,n

]

I
[

am′

n′ δ
m′,m
n′+1,n − am′

n′−1 δ
m′,m
n′−1,n

]







. (149)

Eq. (149) can be described in two ways, depending on which pair of indices (either

n,m, or n′, m′) is used as summation variable, see right hand side of Eq. (151). A

complete recurrence scheme is given in the following section.
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3.1.3 General Recurrence Relations for Coordinate Transforms

The approach to obtain interrelations between the transform coefficients in T̂m′m
n′n (Q̂, d̂)

was plotted in Eq. (120). With the modified ∇r̂-operator, this becomes

∑

n2,m2

Ĝn2,m
n2n T̂m′m2

n′n2
(Q̂, d̂) =

∑

n1m1

diag
{

T̂m1m
n1n (Q̂, d̂)

}

Q̂T Ĝm′m1

n′m1
, (150)

according to the definitions of the rotation matrix Q̂ from Eq. (125), and Ĝm′m
n′n

from Eq. (149). In particular, the complete relation yields






−bmn T̂m′,m+1
n′,n−1 + b−m−1

n+1 T̂
m′,m+1
n′,n+1

−b−m
n T̂

m′,m−1
n′,n−1 + bm−1

n+1 T̂
m′,m−1
n′,n+1

1√
2
(am

n−1T̂
m′,m
n′,n−1 − am

n T̂
m′,m
n′,n+1)




 =








[

−bm′−1
n′+1 T̂

m′−1,m
n′+1,n + b−m′

n′ T̂
m′−1,m
n′−1,n

]

Q̂T
x̂x̂′ +

[

−b−m′−1
n′+1 T̂

m′+1,m
n′+1,n + bm

′

n′ T̂
m′+1,m
n′−1,n

]

Q̂T
x̂ŷ′+

[

−bm′−1
n′+1 T̂

m′−1,m
n′+1,n + b−m′

n′ T̂
m′−1,m
n′−1,n

]

Q̂T
ŷx̂′ +

[

−b−m′−1
n′+1 T̂

m′+1,m
n′+1,n + bm

′

n′ T̂
m′+1,m
n′−1,n

]

Q̂T
ŷŷ′+

[

−bm′−1
n′+1 T̂

m′−1,m
n′+1,n + b−m′

n′ T̂
m′−1,m
n′−1,n

]

Q̂T
ẑx̂′ +

[

−b−m′−1
n′+1 T̂

m′+1,m
n′+1,n + bm

′

n′ T̂
m′+1,m
n′−1,n

]

Q̂T
ẑŷ′+

+
√

2
[

am′

n′ T̂
m′,m
n′+1,n − am′

n′−1 T̂
m′,m
n′−1,n

]

Q̂T
x̂ẑ′

+
√

2
[

am′

n′ T̂
m′,m
n′+1,n − am′

n′−1 T̂
m′,m
n′−1,n

]

Q̂T
ŷẑ′

+ 1√
2

[

am′

n′ T̂
m′,m
n′+1,n − am′

n′−1 T̂
m′,m
n′−1,n

]

Q̂T
ẑẑ′








(151)

This equation describes recurrence relations1 for T̂m′m
n′n (Q̂, d̂) that only depend

on the modified rotation matrix Q̂. From the above equation, the full set of

coefficients for the translation operator can be computed by knowing some initial

values for T̂m′m
n′n (Q̂, d̂). Note, however, that these recurrence relations have to be

customized in order to deliver applicable expressions for calculation. Furthermore,

it is an important task to provide sufficient coefficients for initialization. It is most

appropriate to reduce the complexity of the above equations by decomposition of

the transforms into simple components.

3.1.4 Decomposition of General Transforms into Simpler Steps

Without loss of generality, full coordinate transforms with a matrix Q and a vec-

tor d can be decomposed into smaller steps. It is easy to think about T̂m′m
n′n (Q,d)

as being separately a rotation and a translation, i.e. T̂m′m
n′n (Q, 0) and T̂m′m

n′n (I,d),

respectively. The pure rotation operation is also known as the Wigner -D func-

tion [KR03, KR08].

1The recurrence relations given in Gumerov and Duraiswami [GD01, GD03, GD04] have a

different sign on the right hand side, the reason of which was not found, and its influence is

unclear. However recurrence relations based on Eq. (177) were successfully tested.
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However, it even makes sense to further split these parts up into simpler sub-

transforms.

Decomposition of rotation into z-y π
2
-z-y π

2
-z. In terms of arbitrary rotation,

it is useful to exploit the properties of the rotations around the z-axis since this

operation is very efficient. Therefore it is useful to split up the three rotations

into a zyz-rotation. Even further, it makes sense to perform the more complicated

part, the y-rotation, at a fixed angle π/2 only and represent the variable part in

terms of a z-rotation cf. Fig. 10, see also [PH07b]. Hereby, rotation is efficiently

split up into a z-y π
2
z-y π

2
-z-rotation

r′ = Q(α, β, γ) r (152)

= Qz(α) Qy(β) Qz(γ) r

= Qz(α + π/2) Qy π
2
Qz(β + π) Qy π

2
Qz(γ + π/2)

︸ ︷︷ ︸

Qz-y π
2 -z-y π

2 -z(α,β,γ)

r.

x
y

z

y

z

y

z

y

z

y

z

y

z

x x

x x x

Qy,π2
Qz,π2

Qz,π

Qz,π2
Qy,π2

= Qy(ϑ)

Qz(ϑ)

Figure 10: y-rotation represented in terms of a z-y π
2 -z-y π

2 -z rotation containing only
constant rotations around y.

Decomposition of translations into z-displacement and rotations. Trans-

lation is also efficient when regarding only one direction of translation, in particular

the translation towards the positive z-axis, cf. [GD01, GD03, GD04]. Rotational

transform of the coordinate system into a suitable coordinate system helps to

obtain any arbitrary d by using translation towards z dz

d = Q(ϕd, ϑd, 0) dz = Q(ϕd, ϑd, 0)

0

B

B

B

B

B

@

0

0

1

1

C

C

C

C

C

A

‖d‖. (153)
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With the inverse rotation Q(ϕd, ϑd, 0)−1 = Q(0,−ϑd,−ϕd), this representation

reads as

r′ = r + d (154)

= Q(0,−ϑd,−ϕd)

[

Q(ϕd, ϑd, 0) r + dz

]

.

Fully decomposed transform. A full transform with d and Q in terms of

the more efficiently evaluated parts Qy π
2
, Qz(·), and dz could be symbolically

described as

r′ = Q r + d (155)

= Qz-y π
2
-z-y π

2
-z(0,−ϕd,−ϑd)

[

Qz-y π
2
-z-y π

2
-z(ϕd, ϑd, 0) Qz-y π

2
-z-y π

2
-z(α, β, γ)

︸ ︷︷ ︸

Qz-y π
2 -z-y π

2 -z(α′,β′,γ′)

r + dz

]

.

If the two rotations in the brackets are represented as a single rotation, this trans-

form can be reduced to 2 rotations with 5 variable and 1 fixed angles around z, 4

fixed angles around y, plus the translation along z.

Known simple transform relations. Mirror symmetry with respect to y

Qmy =






1 0 0

0 −1 0

0 0 1




 , Ŷ m

n (θ) = Ŷ −m
n (Qmy θ),

⇒ Tm′m
n′n (Qmy) = δm′,−m

n′n . (156)

Rotation around z by 90◦

Qz π
2

=






0 1 0

−1 0 0

0 0 1




 , Ŷ m

n (θ) =

(

0 −1

1 0

)m

Ŷ m
n (Qz π

2
θ),

⇒ Tm′m
n′n

(
Qz π

2

)
=

(

0 −1

1 0

)m

δm′m
n′n . (157)

Mirror symmetry with respect to x

Qmx = Q−1
z π

2
QmyQz π

2
=






−1 0 0

0 1 0

0 0 1




 , Ŷ m

n (θ) = (−1)mŶ −m
n (Qmx θ),

⇒ Tm′m
n′n (Qmx) = (−1)m δm′,−m

n′n . (158)
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Mirror symmetry with respect to z

Qmz =






1 0 0

0 1 0

0 0 −1




 , Ŷ m

n (θ) = (−1)n+mŶ m
n (Qmz θ),

⇒ Tm′m
n′n (Qmz) = (−1)n+mδm′,m

n′n . (159)

3.1.5 Recurrence Relations for Translation in z Direction

For translation towards z, all entries in the rotation matrix except for Q̂x̂x̂′ =

Q̂ŷŷ′ = Q̂ẑẑ′ = I are zero. Therefore, this translation can be written as the

complex scalar T̂m′m
n′n (dz).

A translation into z-direction only, i.e., a shift along the rotation axis, must

preserve orthogonality in azimuth. Therefore the base solutions in azimuth remain

orthogonal, and there is no way for a solution of index m′ to be made dependent to

m in the shifted reference frame other than m′ = m. Consequently, the operator

reduces to a diagonal form wrt. m and m′

T̂m′m
n′n (dz) = δmm′ T̂m′m

n′n (dz) (160)

F̂m
n (r̂) =

∞∑

n′=0

T̂mm
n′n (dz)Ê

m
n′(r̂′).

Since mirroring the y-axis before and after the transform does not affect the trans-

lation along z, we also get

T̂mm
n′n (dz) = δm2,−m

n2n T̂m1,m2
n1n2

(dz) δ
m′,−m1

n′n1
= T̂−m′,−m

n′n (dz). (161)

Furthermore, mirroring the z-axis before and after translation yields the inverse

operation. Exploiting the symmetry and orthogonality of the unitary transform

operation reveals

T̂mm
nn′ (−dz) = (−1)n′−m T̂mm

nn′ (dz)(−1)n−m,
∑

n′

T̂mm
n′n′′(−dz) T̂

mm
nn′ (dz) = δn′′n =⇒ T̂mm

nn′ (dz) = (−1)n+n′

T̂mm
n′n (dz). (162)

Hence, evaluation of T̂mm
nn′ (dz) by recurrence relations is only required for 0 ≤ m

and 0 ≤ n′ ≤ n while other values are defined by Eqs. (161) (162).

The recurrence relations in the first and third line of Eq. (151) for m′ = m+ 1

and m′ = m remain :

(

T̂m+1,m+1
n′,n+1 (dz)

T̂mm
n′,n+1(dz)

)

=





1
b−m−1
n+1

[

−bmn′+1T̂
mm
n′+1,n(dz) + b−m−1

n′ T̂mm
n′−1,n(dz) + bmn T̂

m+1,m+1
n′,n−1 (dz)

]

1
am

n

[

−am
n′ T̂mm

n′+1,n(dz) + am
n′−1T̂

mm
n′−1,n(dz) + am

n−1T̂
mm
n′,n−1(dz)

]



 .

(163)
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Note that the start values for Tmm
n′0 (dz) are known. It is important to know that

both recurrence relations must be evaluated at n′ = 0 for n ≥ 1 at the start of

the recurrence, at which the expression Tmm
n′−1,n(dz) vanishes. The second relation

allows progression in n, and the first relation progresses in m.

Initial values for z-displacement. The Green’s function located at the origin

r = 0 correspond to zero-order base functions

G (r) =
−ik√

4π

√

1

4π

e−ikr

−kr =
−ik√

4π
S0

0(r), (164)

GR (r) =
k√
4π

√

1

4π

− sin(kr′)

−kr =
−k√
4π

R0
0(r). (165)

The coordinate transform for translation is expressed by r′ = r + d without

rotation Q = I. Referring to Eqs. (85)(87) in Sec. 2.4.2, the representation of the

Green’s functions at the coordinates d expresses a basic form of translation and

yield a scalar value:

G (r) I =
∞∑

n′=0

n′

∑

m′=−n′







−ik Ŝ−m′

n′ (d) R̂m′

n′ (r′), for r′ < d,

−ik R̂−m′

n′ (d) Ŝm′

n′ (r′), for r′ > d,

GR (r) I =

∞∑

n′=0

n′

∑

m′=−n′

−k R̂−m′

n′ (d) R̂m′

n′ (r′).

Note that for m = 0, only the cosine component is non-zero, i.e. stays scalar-

valued. As a consequence of

S0
0(r) =

√
4π

−ik G(r), and R0
0(r) =

√
4π

−k GR(r),

the coefficients T̂mm
n′n (dz) for displacements in z can be directly read from the above

equations using n = m = 0:

T̂ 00
n′0(dz) I =

√
2n′ + 1







h
(2)
n (k dz), for Ŝ0

0(r)← R̂0
n′(r′),

jn(k dz), for
Ŝ0

0(r)← Ŝ0
n′(r′),

R̂0
0(r)← R̂0

n′(r′).

. (166)

3.1.6 Rotation Around z -Axis

In general, a rotation is always defined for a common n = n′. This can easily be

seen by considering the orthogonality of the radial propagation terms regarding

the complete base solutions. The radial propagation terms depend on the order n

only, hence

T̂m′m
n′n (Q) = T̂m′m

n′n (Q) δn′n. (167)
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The (azimuthal) rotation around the z-axis is easily described using the properties

of the azimuthal solutions directly. In particular, these are the addition theorems

of the sine and cosine:

Φ̂m(ϕ′ − ϕ1) = Φ̂−m(ϕ1) Φ̂m(ϕ′). (168)

Defining ϕ = ϕ′ − ϕ1 and considering ϕ1 as rotation angle, this is a transform

Φm(ϕ) = Φ̂−m(ϕ1)Φ̂m(ϕ′). The corresponding Cartesian coordinate transform

equals

r′ = Qz(ϕ1) r, (169)

Qz(ϕ1) =






cos(ϕ1) − sin(ϕ1) 0

sin(ϕ1) cos(ϕ1) 0

0 0 1




 . (170)

It is obvious that the transform rule Tm′m
n′n (Qz(ϕ1)) is described as

T̂m′m
n′n (Qz(ϕ1)) = Φ̂m(ϕ1)δn′nδm′m. (171)

Using the addition theorem for Φ̂m(ϕ1) =
(

Φ̂1(ϕ1)
)m

allows efficient computation.

The transform relation yields

F̂m
n (r̂) = Φ̂m (ϕ1) F̂

m
n (r̂′). (172)

3.1.7 Recurrence Relation for π/2-Rotation Around y

A rotation around y by π/2 is defined as

Q =






0 0 −1

0 1 0

1 0 0




 ⇒ Q̂ =

1

2






I −I −
√

2I

−I I −
√

2I√
2I
√

2I 0




 . (173)

It can be seen from the recurrence relation and its initialization (see later) that

this operator yields a real-valued scalar (i.e. the Wigner-d functions evaluated

at π/2, cf. [KR03, KR08]), hence the thin letter Tmm
nn (Qy π

2
) is sufficient for its

description. It also has the following properties together with its inverse, which

rotates by −π/2:

T̂m′m
nn (Qy π

2
) = (−1)m+m′

T̂m′m
nn (Q−1

y π
2
) (174)

∑

n′

T̂m′′m′

nn (Q−1
y π

2
) T̂mm′

nn (Qy π
2
) = δm′′m =⇒ T̂mm′

nn (Qy π
2
) = (−1)m+m′

T̂m′m
nn (Qy π

2
).

(175)
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Furthermore, the following interesting symmetry holds, which facilitates conver-

sion to real-valued notation later

Ŷ m
n (Qy π

2
θ) = Ŷ m

n (QmxQy π
2
Qmz θ), (176)

Tm′m
nn (Qy π

2
) =

∑

m1,m2

(−1)mδm2,−m
nn Tm1m2

nn (Qy π
2
)(−1)n+m1δm′m1

nn

= (−1)n+m+m′

T−m′,m
nn (Qy π

2
).

Therefore, only 0 ≤ m′ ≤ m needs to be evaluated while the other values

are found due to symmetry. As there may only be coefficients combining the

harmonics at the same order T̂m′m
n′n δn′n, for n = n′ + 1, the recurrence relation in

the first line of Eq. (151) reduces to

T̂m′,m+1
n−1,n−1(Qy π

2
) =

1

2 bmn

[

bm
′−1

n T̂m′−1,m
nn (Qy π

2
)− b−m′−1

n T̂m′+1,m
nn (Qy π

2
) + 2am′

n−1 T̂
m′,m
nn (Qy π

2
).
]

(177)

Initial values of π/2-rotation around y. Axially symmetric spherical har-

monics distributions are most easily expressed when the rotation axis coincides

with the z-axis. Such distributions have non-zero coefficients for m = 0 only. If

the axial symmetry of a distribution is given rotated to any arbitrary axis, the ad-

dition theorem can be utilized to describe the equivalence to a distribution aligned

with the z-axis:

Pn(θ
T
1 θ

′) I =
n∑

m′=−n

Ŷ −m′

n (θ1) Ŷ
m′

n (θ′). (178)

This corresponds to

Ŷ 0
n (χ, arccos(θT

1 θ
′)) =

√

4π

2n+ 1

n∑

m′=−n

Ŷ −m′

n (θ1) Ŷ
m′

n (θ′), (179)

Note that the equation contains several angular differences

arccos(θT
1 θ

′) = ϑ1 − ϑ′, and Φ̂T
m′(ϕ1) Φ̂m′(ϕ′) = cos(m(ϕ′ − ϕ1)), (180)

and there is no dependency on χ since m = 0. We may regard the angles ϕ1 and

ϑ1 as the orientation of the z′-axis, i.e. θ1. Re-defining (χ, ϑ) to θ, this is simply

Ŷ 0
n (θ) =

√
4π

2n+1

∑n

m′=−n Ŷ
−m′

n (θ1) Ŷ
m′

n (θ′). Consequently, the initial values of

the rotation operator T̂m′m
nn (Qy π

2
) are

T̂m′0
nn (Qy π

2
) I =

√

4π

2n+ 1
Ŷ −m′

n (0, π/2) =

√

4π

2n+ 1
N̂ |m′|

n P |m′|
n (0) I. (181)
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3.1.8 Transform Relations for Spherical Base Solutions with Real-
Valued Spherical Harmonics

Using the Euler identity and again L representing the imaginary constant i =√
−1, the normalized real-valued base solutions

Fm
n (r̂) =

(

Fm
n,c(r̂)

Fm
n,s(r̂)

)

(182)

can be easily related to their complex-valued counterpart F̂m
n (r̂)

F̂m
n (r̂) =

1√
2− δm

[
I Fm

n,c(r̂) +L Fm
n,s(r̂)

]
(183)

Fm
n (r̂) =

√

2− δm F̂m
n (r̂)

(

1

0

)

.

The evaluation of the transform expressions for z-translation, z-rotation, and y π
2

rotation are well-described by the recurrence relations for the complex-valued case.

Real-valued expressions directly follow from these relations.

Real-valued transform for z-translation. The z-translation transform pre-

serves the orthogonality between azimuth solutions δmm′ and the same re-normalization

of real-valued solutions is required on both sides. So this transform is equal to the

complex-valued case:

Fm
n (r̂) =

∞∑

n′=0

Tmm
n′n (dz)E

m
n′(r̂′), (184)

Tmm
n′n (dz) = T̂mm

n′n (dz). (185)

Therefore, the initialization and recurrence relations for real-valued z-translation

remain unchanged

T 00
n′0(dz) I =

√
2n′ + 1







h
(2)
n (k dz), for S0

0(r)← R0
n′(r′),

jn(k dz), for
S0

0(r)← S0
n′(r′),

R0
0(r)← R0

n′(r′).

,

(

Tm+1,m+1
n′,n+1 (dz)

Tmm
n′,n+1(dz)

)

=





1
b−m−1
n+1

[
−bmn′+1T

mm
n′+1,n(dz) + b−m−1

n′ Tmm
n′−1,n(dz) + bmn T

m+1,m+1
n′,n−1 (dz)

]

1
am

n

[
−am

n′Tmm
n′+1,n(dz) + am

n′−1T
mm
n′−1,n(dz) + am

n−1T
mm
n′,n−1(dz)

]



 ,

Tmm
nn′ (dz) = (−1)n+n′

Tmm
n′n (dz).

Note, again, that for n = 0 the n − 1 terms on the right hand side vanish, and

that the initialization has to be carried out for n up to n = 2N first.
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Real-valued transform for z-rotation. Conveniently, the rotation around the

z-axis works exactly the same way for real-valued spherical harmonics as it does

for complex-valued spherical harmonics in real-valued matrix notation

Y m
n (θ) = Φ̂m (ϕ1) Y

m
n (θ′).

Real-valued transform for y π
2

rotation. For a rotation by 90◦ around y, the

transform differs from the complex-valued case in real-valued matrix representa-

tion. The following holds, cf. Eqs. (183)(176)

Ŷ m
n (θ) =

1√
2− δm

[
I Y m

n,c(θ) +L Y m
n,s(θ)

]
=

n′

∑

m′=−n

T̂m′m
nn (Qy π

2
) Ŷ m′

n (θ′) (186)

=
n∑

m′=0

2− δm′

2

[

T̂m′m
nn (Qy π

2
) Ŷ m′

n (θ′) + T̂−m′,m
nn (Qy π

2
) Ŷ −m′

n (θ′)
]

=
n∑

m′=0

√
2− δm′

2

[

I
(

1 + (−1)n+m+m′

)

T̂m′m
nn (Qy π

2
)Y m′

n,c (θ′)+

L
(

1− (−1)n+m+m′

)

T̂m′m
nn (Qy π

2
)Y m′

n,s (θ′)

]

.

Consequently, the equation for the real-valued solutions reads as

Y m
n (θ) =

n∑

m′=0

diag

{

δ(n+m+m′ mod 2)

δ(n+m+m′+1 mod 2)

}

Tm′m
nn (Qy π

2
)Y m′

n (θ′), (187)

Tm′m
nn (Qy π

2
) =

√

2− δm′

√

2− δm T̂m′m
nn (Qy π

2
). (188)

Re-written into real-valued notation, initialization of Tm′m
nn

(
Qy π

2

)
needs to be

done for 0 ≤ m′ ≤ 2N using Eq. (189), the recurrence relation for N ≥ n ≥ 2,

0 ≤ m ≤ min{n − 2, 2N − n}, and m + 1 ≤ m′ ≤ n using Eq. (190), and the

symmetry Eq. (191) yields coefficients for m′ + 1 ≤ m ≤ n:

Tm′0
nn (Qy π

2
) =

√

4π

2n + 1
N |m′|

n P |m′|
n (0), (189)

Tm′,m+1
n−1,n−1(Qy π

2
) =

√

2− δm+1

2 bmn
√

2− δm

{
√

2− δm′

[
bm

′−1
n

√

2− δm′−1

Tm′−1,m
nn (Qy π

2
) (190)

− b−m′−1
n

√

2− δm′+1

Tm′+1,m
nn (Qy π

2
)

]

+ 2am′

n−1 T
m′,m
nn (Qy π

2
)

}

,

Tmm′

nn (Qy π
2
) = (−1)m+m′

Tm′m
nn (Qy π

2
). (191)
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3.2 Coordinate Transform Recipes

With the given recurrence schemes, a full transform of coordinates r = Qr′ + d

is decomposed into the following steps, symbolically

E(r) = T (Q2)T (dz)T (Q1) F (r′), (192)

with dz representing translation into the z-axis and Q rotations of the coordinate

system. Rotation itself is further decomposed into fixed rotations around y and

variable rotations around z

T (Q) = T (Qz)TQy π
2
T (Qz)TQy π

2
T (Qz). (193)

The calculation of the T (dz) matrices is depicted in Fig. 11 and makes use of

Eqs. (166), (163), (162).

Rotation around z is described in Eq. (172).

Fig. 12 shows the scheme to compute coefficients TQy π
2

using Eqs. (189), (190),

(191), and how they apply to sine- and cosine-dependent spherical harmonics,

cf. Eq. (187).
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Figure 11: Scheme for computation of the Tmm
n′n (dz) transform coefficients for N = 3

using the initialization Eq. (166), recurrence Eq. (163), and symmetry Eq. (162)
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Figure 12: Scheme for computation of the Tm′m
nn (Qy π

2
) transform coefficients for N =

3 using the initialization Eq. (189), recurrence Eq. (190), symmetry Eq. (191), and
exclusive application to sine or cosine Eq. (187).

56



3.3 Other Manipulations of Spherical Base So-

lutions

Aside from coordinate transforms, many other ways of manipulating the spherical

base-solutions are interesting in terms of sound-radiation. Above all, rotational

matching and the manipulation of angular data is interesting for sound-radiation

analysis and synthesis.

3.3.1 Spherical Correlation

Rotational matching of angular data is the key to similarity detection of radiation

data on the sphere. However, the result of spherical correlation is not defined on

the sphere S2 anymore, but on SO(3), a hyperspherical space with 3 angles, i.e.

the 3 rotational degrees of freedom. Spherical correlation c(α, β, γ) takes one of

both input functions g(θ), a(θ), rotates it by the 3 variable rotation angles, and

integrates it over the other function, see [DH94] and [KR08]

c(α, β, γ) =

∫

S2

g(θ) a(Q−1(α, β, γ) θ) dθ, (194)

=
∑

n,m

∑

n′,m′

gnm an′m′

n′

∑

m′′=−n′

Tm′′m′

n′ (−γ,−β,−α)

∫

S2

Y m
n (θ) Y m′′

n′ (θ) dθ

︸ ︷︷ ︸

=δmm′′ δnn′′

,

=

∞∑

n=0

n∑

m=−n

n∑

m′=−n

gnm anm′ Tmm′

n (−γ,−β,−α).

Rotational matching can be done by finding three rotation angles (α, β, γ) that

maximize c(α, β, γ).

3.3.2 Spherical Convolution
(and its Relation to Circular Convolution)

Filtering operations of angular data on the sphere are performed using spherical

convolution. The output must yield a result that is defined on the S2-sphere in

order to work. One of the input functions of this operation, a(θ), serves as a

convolution kernel. The convolution operation integrates the inversely rotated

function a(θ) over the input function g(θ) evaluated at the rotated z-axis unit

vector, with both rotations using all 3 rotation angles of the integration variable.

Due to its definition, the spherical harmonics coefficients of the kernel with m 6= 0

are omitted as they yield zero after integration around α. According Driscoll and
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Healy [DH94], the definition of spherical convolution is

c(θ) =

∫

SO(3)

g(Q(α, β, γ)

0

B

B

B

B

B

B

B

B

@

0

0

1

1

C

C

C

C

C

C

C

C

A

) a(Q−1(α, β, γ) θ) dα dβ dγ. (195)

=
∑

n,m

∑

n′,m′

gnm an′m′

∫

SO(3)

Y m
n (α, β)Y m′

n′ (Q−1(α, β, γ) θ)dαdβdγ

︸ ︷︷ ︸

=δm′0δnn′Y m
n (θ)

=
∞∑

n=0

n∑

m=−n

gnm an,0 Y
m
n (θ).

Note that also the truncation of the spherical harmonics to a maximum order n ≤
N can also be understood in terms of convolution. Such a truncation corresponds

to an angular band limitation, i.e., a limitation of the resolution by convolution.

In order to characterize the properties of a given convolution integral, it is

sufficient to regard the spectral convolution kernel an that can be expanded to

the angular space by a series of Legendre-polynomials Pn(cos(ϑ)). To observe and

modify the shape of an in the angular space, the equivalence between Legendre

and Chebyshev polynomials is practical. In particular, Chebyshev polynomials (of

the first kind) are the even-symmetric circular harmonics, i.e. cosine harmonics.

As convolution in circular harmonics is better understood by most engineers, it is

convenient to find the equivalent expression of the kernel in this domain.

Relation between Legendre and Chebyshev polynomials. The Legendre

polynomials Pn(µ) and the Chebyshev polynomials Tm(µ) of the first kind follow

the recurrence relations:

P0 (µ) = 1 (196)

P1 (µ) = µ (197)

Pn (µ) =
2n− 1

n
µPn−1 (µ)− n− 1

n
Pn−2 (µ) ∀n ∈ N0 : n ≥ 3, (198)

T0 (µ) = 1 (199)

T1 (µ) = µ (200)

Tm (µ) = 2µTm−1 (µ)− Tm−2 (µ) ∀m ∈ N0 : m ≥ 3. (201)

The Chebyshev polynomials are even-symmetric circular harmonics:

Tm (cos (α)) = cos (m α) . (202)

Therefore using µ = cos (α), the expansion into Chebyshev polynomials is a cosine

transform, i.e. the Chebyshev transform. Both the Legendre and Chebyshev poly-

nomials are orthogonal polynomials in the range −1 ≤ µ ≤ 1. As all polynomials
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only contain powers µk up to k ≤ n or k ≤ m, the two representations must be

equivalent. This equivalence can be easily expressed in matrix notation with the

polynomial coefficients tm,k and pn,k weighted by the powers µk and the expansion

coefficients ct[m] and cp[n]. We equate both representations

(

µ0, µ1, µ3, . . .
)

P cp
!
=
(

µ0, µ1, µ3, . . .
)

T ct (203)

P =















p0,0, 0, p2,0, 0, p4,0 . . .

0, p1,1, 0, p3,1, 0, . . .
..., 0, p2,2, 0, p4,2 . . .
...,

..., 0, p3,3, 0, . . .
...,

...,
..., 0, p4,4, . . .

...,
...,

...,
...,

. . . ,
. . .















,T =















t0,0, 0, t2,0, 0, t4,0 . . .

0, t1,1, 0, t3,1, 0, . . .
..., 0, t2,2, 0, t4,2 . . .
...,

..., 0, t3,3, 0, . . .
...,

...,
..., 0, t4,4, . . .

...,
...,

...,
...,

. . . ,
. . .















(204)

The conversion follows by inversion after omitting the powers of µ in Eq. (203)

T ct = P P−1T
︸ ︷︷ ︸

:=W

ct, (205)

cp = W ct. (206)

Instead of computing the polynomial coefficients and matrix inversion, the con-

version can be defined in terms of the recurrence relations:

(1− µ2)
∂

∂µ
Pn(µ) =

n(n+ 1)

2n+ 1
[Pn−1(µ)− Pn+1(µ)] , (207)

(1− µ2)
∂

∂µ
Tm(µ) =

m

2
[Tm−1(µ)− Tm+1(µ)] . (208)

The transform relation Wnm must also hold after taking the derivative:

n∑

n=0

WnmPn (µ) = Tm (µ) , (209)

n∑

n=0

Wnm

∂

∂µ
Pn (µ) =

∂

∂µ
Tm (µ) . (210)

Insertion of the recurrence relations divided by (1− µ2) yields:

∑

n′

Wn′m

n′(n′ + 1)

2n′ + 1
[Pn′−1(µ)− Pn′+1(µ)] =

m

2
[Tm−1(µ)− Tm+1(µ)] , (211)

The remaining Chebyshev polynomials are expanded into Legendre polynomials:

∑

n′

Wn′m

n′(n′ + 1)

2n′ + 1
[Pn′−1(µ)− Pn′+1(µ)] =

m

2

∑

n′′

[Wn′′,m−1Pn′′(µ)−Wn′′,m+1Pn′′(µ)] .

(212)
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Exploiting the orthogonality relation
∫ 1

−1
Pn′(µ)Pn(µ)dµ = αδn′n, this results after

division by the scale factor α:

(n+ 1)(n+ 2)

2n+ 3
Wn+1,m −

n(n− 1)

2n− 1
Wn−1,m =

m

2
[Wn,m−1 −Wn,m+1] . (213)

We know the start values W00 = W11 = 1 and W10 = W01 = 0. In order to apply

the recurrence, it is useful to set m = n+ 2l − 1 with l ∈ N0:

Wn,n+2l = 2
n+2l−1

[

− (n+1)(n+2)
2n+3

Wn+1,n+2l−1 + n(n−1)
2n−1

Wn−1,n+2l−1

]

+Wn,n+2l−2

(214)

as expressions in this relation vanish at given indices, i.e. Wnm = 0 for n > m,

m < 0, n < 0, or mod (n, 2) 6= mod (m, 2).

The derivation of the inverse transform W̃mn yields equivalent solutions, using

W̃00 = W̃11 = 1, W̃10 = W̃01 = 0, m = n+ 2l− 1, and Wmn = 0 for m > n, n < 0,

m < 0, or mod (m, 2) 6= mod (n, 2):

W̃m,m+2l = 2(m+2l)−1
2(m+2l−1)(m+2l)

[

(m− 1)W̃m−1,m+2l−1 − (m+ 1)W̃m+1,m+2l−1

]

+ W̃m,m+2l−2.

(215)

Conversion between Legendre / Chebyshev coefficients. The above rela-

tions are especially useful since the properties of the symmetric window functions

well-known from signal processing [OSB99] can be directly exploited to describe

the spatial characteristics of spherical filters and vice versa:

c(p)
n =

M∑

m=0

Wnm c
(t)
m , c(t)m =

N∑

n=0

W̃mn c
(p)
n , (216)

using the recurrences Eq. (214) and Eq. (215) that are illustrated in Fig. 13. For

spherical filters see also [Dan01, p. 184, 186][Boy00, p. 421].

Fig. 14 shows known window functions in their Legendre-representation. Fig. 15

illustrates what happens when directly using the window functions as spherical fil-

ters without conversion. Note that the orthonormalization has to be taken care

of separately; it is excluded from the above equations.

Angular resolution of N-truncated spherical harmonics (and circular

harmonics). The maximum resolution of the spherical harmonics can be ex-

pressed in terms of a rotationally symmetric, band-limited beam. This is quite

similar to the description in Rafaely [Raf04] and Poletti [Pol05], but explicit ap-

proximations for different definitions of the resolution are given here for the orders

of truncation 2 ≤ N ≤ 15. Its transform coefficients γn can be found by trans-

forming g(µ) = δ(1− µ), a beam pointing towards µ = cos(ϑ)
!
= 1, into spherical
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Figure 13: Recurrences for conversion between Legendre and Chebyshev coefficients,
according to Eq. (214), and Eq. (215).
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Figure 14: For the manipulation of spherical beam characteristics (main/side lobes),
conversion of known window functions from the domain of Chebyshev polynomials into
the Legendre polynomial domain is helpful. a) shows the series of normalized Cheby-
shev coefficients, b) the normalized Legendre coefficients, and c) the resulting beam
characteristics.

harmonics. Its expansion truncated to n ≤ N and normalized to 1 corresponds to

γn = 2π

∫ 1

−1

NnPn(µ)δ(1− µ) dµ = 2
√

(2n+ 1)π, (217)

gsph(cos(ϑ)) =
1

(N + 1)2

N∑

n=0

γnNnPn(cos(ϑ)) =

N∑

n=0

2n+ 1

(N + 1)2
Pn(cos(ϑ)). (218)

The main lobe width can be referred to as the −3dB, −6dB or −∞dB width of

this function. Fig. 16 and Table 1 shows the spherical beam width compared with

an even symmetric circular beam width (or DTFT main lobe):

gcirc(cos(ϕ)) =
1

2N + 1

N∑

m=0

(2− δm) cos(mϕ) =
sin [(N + 0.5)ϕ]

(2N + 1) sin(ϕ/2)
. (219)
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Figure 15: It is informative to utilize the window sequences in the Legendre domain.
Choosing rectangular, Hann, Bartlett and Blackman windows for the normalized Leg-
endre coefficients b), the expansion yields c). Equal results are obtained using the
normalized Chebyshev coefficients in a). c) differs from Fig. 14 c).

spherical beam circular beam
-3dB -6dB -∞dB -3dB -6dB -∞dB

∠ ≈ 187
N+1

◦ ≈ 256
N+1

◦ ≈ 439
N+1

◦ ≈ 160
N+0.5

◦ ≈ 218
N+0.5

◦
= 360

N+0.5

◦

ǫ

N = 2
−2.59◦ −3.05◦ +0.06◦ −0.92◦ −1.05◦ 0◦

N = 5
−0.05◦ −0.06◦ +0.00◦ −0.01◦ −0.01◦ 0◦

N = 15
+0.11◦ +0.13◦ +0.00◦ +0.03◦ +0.03◦ 0◦

Table 1: Approximation ∠ and approximation errors ǫ for main lobe widths of truncated
spherical and circular harmonics.

Radial region of convergence for N-truncated shifted point-source. Fig. 17

illustrates the bounded radial region of convergence that is inherent to truncated-

order decompositions into spherical base-solutions. As a rule-of-thumb, a diameter

φ can be given in wave-lengths as to bound this region

φ

λ
≤ N

π
≈ N

3
. (220)

Roughly speaking, this relation is responsible for the sweet-spot in Ambisonics and

characterizes the maximum alias-free diameter of compact spherical loudspeaker

arrays, cf. [WA01, ZPF09, ZSH07]. In terms of musical instrument recording,

this diameter roughly limits the diameter, within which the instrument should be

carefully centered, i.e. the centering problem cf. 5.1.5.
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(a) Characteristics of band-limited spherical beams and their main lobe width.
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(b) Characteristics of band-limited circular beams (or DTFT) and their main lobe width.

Figure 16: Illustration of band-limited spherical and circular beam-widths.
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Figure 17: Plane-wave and Green’s function (at θ0 = 0, r0/λ = 2) representation using
truncated-order spherical base-solutions for different truncation numbers N. The radial
region of convergence r/λ ≤ N/6 becomes obvious.
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3.3.3 Spherical Multiplication

The operation of multiplying two functions g(θ) and a(θ) on the sphere can also

be performed in their spherical harmonics decomposition. The resulting coeffi-

cients cnm are linear combinations of the products gn1,m1 an2,m2 . The linear fac-

tors describing these linear combinations are called Gaunt coefficients Cm1,m2,m
n1,n2,n ,

cf. [DH94]

c(θ) = g(θ) a(θ), (221)

SHT−→ cnm =
∑

n1,m1,n2,m2

Cm1,m2,m
n1,n2,n gn1,m1 an2,m2. (222)

The computational effort to evaluate the Gaunt coefficient is unfortunately high.

There are some resources dealing with a faster evaluation that use tensor calcu-

lus. Usually, Gaunt coefficients are given for complex-valued spherical harmonics.

For more information regarding efficient evaluation of the Gaunt coefficients, the

interested reader is referred to [Xu96, Séb98, PH07a].

Spherical multiplication is especially interesting to describe degeneracy of the

orthogonality relation for incompletely sampled spheres, on which a sampling den-

sity function anm is available [PPS01], i.e. Dm1,m
n1,n =

∑

n2,m2
Cm1,m2,m

n1,n2,n an2,m2.

Moreover, the angular impedance problem given above can only be solved

using Gaunt coefficients. Furthermore, it can be interesting to apply angular

windows to given angular functions, in order to emphasize or attenuate particular

angular domains. However, this might mainly yield high-order decompositions.

Alternatively, the approach in [PZ09] could be employed for spherical windowing

using limited orders.

An unresolved question closely related to the Gaunt coefficients is: Is there a

(unique) minimum phase on the sphere?. This minimum phase should be defined

such that the coefficient used to create an angular magnitude pattern can be

resolved at lowest orders n→ 0. As any pattern can be decomposed of a magnitude

multiplied by a complex-valued phase (or real-valued sign), one way to solve the

question could utilize the Gaunt-coefficients.
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Chapter IV

DISCRETE SPHERICAL HARMONICS

TRANSFORM

Many scientific disciplines use the discrete Fourier-transform (DFT) for the anal-

ysis or interpolation of discrete samples of data in time, space, or frequency. In

this chapter, the DFT on the sphere, the discrete spherical harmonics transform

(DSHT), is of particular interest. DSHT allows to obtain spherical wave-spectra

from the data of an array of sensors (microphones), arranged on a spherical sur-

face. Usually two preconditions are assumed for the calculation of the spherical

wave-spectrum

• the angular sampling must be suitable to calculate a DSHT

• the data must be angularly band-limited to the maximum order of the DSHT

This chapter provides an overview over a variety of ways to sample the sphere

and of actually calculating the DSHT as found in literature. The properties and

restrictions for the different DSHT methods are explained. The chapter concludes

with a novel comparison of efficiency and angular aliasing properties of different

sampling schemes, parts of which have been briefly introduced in [Zot09].

4.1 Matrix/Vector Notation (Spherical Wave

Spectrum)

As defined in Chap. 2, the spherical wave spectrum can be very useful when de-

scribing problems in spherical coordinates. We introduce a vector/matrix notation

for the spherical harmonics in order to simplify our computation and the subse-

quent descriptions of the DSHT. For this purpose, a linear indexing scheme can

be introduced, using finite sums:

q =
m∑

m′=−n

1 +
n−1∑

n′=0

n′

∑

m′=−n′

1 = (n + 1) +m+ (n)2 = n2 + n+m+ 1. (223)

Assume a spherical harmonics coefficients bnm. We use the q to index bq = bnm

linearly. It is then simple to define a vector bN = vec {bq} = vecN {bnm} containing
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all coefficients for 0 ≤ n ≤ N:

bN = vec {bq} =









b1

b2
...

b(N+1)2









= vecN {bnm} :=




















b0, 0

b1,−1

...

bn,−n

...

bn,n







2n+ 1

...

bN,N




















. (224)

If the expansion bn is independent of m, the following can be used:

bN = vecN {bn} =




















b0

b1
...

bn
...

bn







2n+ 1

...

bN




















.

Similarly, we define a spherical harmonics diagonal matrix as:

diagN {bnm} = diag {bN} =















b0, 0 0, 0 0 . . . 0

0 b1,−1 0 0 . . . 0

0 0 b1, 0 0 . . . 0

0 0 0 b1, 1
. . . 0

...
...

...
. . .

. . .
...

0 0 0 0 . . . bN,N















. (225)

For the sound pressure and the sound-particle velocity, the notation of the spherical

wave spectrum becomes compact:

ψN (kr) = diagN {jn (kr)} bN + diagN

{
h(2)

n (kr)
}
cN (226)

νN (kr) = diagN

{
i j′n (kr)

ρ0c

}

bN + diagN

{

i h
′(2)
n (kr)

ρ0c

}

cN. (227)

Matrices consist of a collection of vectors b
(l)
N in the shape

BN = mtx
{

b
(l)
N

}

= mtxN

{
b(l)nm

}
, (228)

=
(

b
(1)
N , . . . , b

(L)
N

)

.

These kind of matrices are required when dealing with discrete spherical angle

geometries.
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4.2 Discrete Spherical-Harmonics-Transforms

and Sampling the Sphere

In many cases, it is desirable to obtain the spherical harmonics decomposition from

a discrete-point representation on the sphere. Specifically, we can obtain a spher-

ical wave-spectrum of a sound field from the discrete distribution measured with

a spherical microphone array. The spherical harmonics can also be understood as

approximative interpolation between the spatially discrete points.

Closely related to the question how spherical distributions can be transformed

into spherical harmonics, a sampling strategy for spherical surfaces has to be

found. This question is of importance for both spherical loudspeaker and micro-

phone arrays in acoustics. Its solution offers important answers to down-to-earth

questions:

How shall I arrange . . .

• . . . a surrounding spherical loudspeaker array for higher-order Ambisonics

playback?

• . . . a compact spherical microphone array for higher-order Ambisonics record-

ings?

• . . . a compact spherical loudspeaker array for directivity pattern synthesis?

• . . . a surrounding spherical microphone array for directivity pattern capture?

Transform on the continuous sphere. As we know from Eq. (28), the spher-

ical harmonics transform is computed by an integral. This integral can be written

as a projection of a distribution g (θ) on the base of the continuous spherical

harmonics y (θ) = vecN {Y m
n (θ)} over the unit sphere S2, with N→∞:

γ =

∫

S2

y (θ) g (θ) dθ, (229)

y (θ) = vecN→∞ {Y m
n (θ)} . (230)

Eq. (224) gives a definition of the above vector notation. Complementary to this

integral, the scalar, continuous space function g (θ) is obtained by an infinite sum

over all the spherical harmonics weighted by the coefficient vector γ:

g (θ) = y (θ)T
γ. (231)

4.2.1 Types of Discrete Spherical Harmonics Transforms

The spherical harmonics expansion on a sampled sphere is directly equivalent to

Eq. (231). The distribution g(θ) is sampled on a set of L discrete spherical-angles
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{θl} and written as a vector g:

g =









g (θ1)

g (θ2)
...

g (θL)









(232)

Usually, the spherical harmonics expansion is assumed to be band-limited by the

order n ≤ N. Accordingly, the expansion given in Eq. (231) is written as

g = Y T
N γN, (233)

Y T
N = mtxN {Y m

n (θl)}T , γN = vecN {γnm} . (234)

Using L nodes and the (N + 1)2 band-limited spherical harmonics, the maximum

order for an (over-)determined transform pair equals Nmax = ⌊
√

L−1⌋. For various

types of transforms, the truncation has to be smaller than that N ≤ Nmax. The

ordered list below shows the most important types of transforms. These transforms

impose descendingly strict requirements on the sampling grid {θl}:

1. Hyperinterpolation on the sphere requires exactly L = (N + 1)2 (critical)

sampling nodes on the sphere. The sampling nodes must provide a well-

conditioned matrix YN, so that an exact inverse exists YNY
−1

N = Y −1
N YN =

I. Given such points, the expansion reconstructs perfectly at every node.

2. For equal-weights quadrature/t-design, the rows of the matrix YN must be

orthonormal (up to a scale factor) , i.e. YNY
T

N = aI. The few sampling

constellations fulfilling this requirement are usually over-determined, i.e.

(N + 1)2 < L. Therefore only band-limited distributions g = Y T
N γN can be

fully resolved, reconstruction at {θl} is only approximate otherwise.

3. For weighted quadrature the rows of the matrix YN must become orthonor-

mal, at least after applying specific weights
√
wl to the nodes. Usually,

weighted quadrature grids are over-determined. With the squared weights

in a vector w = vec {wl}, this reads YN diag {w} Y T
N = I.

4. For a least-squares transform, the matrix YNY
T

N needs not equal unity, but

must be well-conditioned. Usually, suitable sampling grids will have to be

over-determined. Using the least-squares inverse, the transform yields the

best approximation, which is the exact inverse only in case of a strictly

band-limited distribution g = Y T
N γN. Otherwise, only approximate recon-

struction is feasible. Approximation errors tend to be high in weakly sampled

regions on the sphere.
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5. For a weighted least-squares solution, the matrix YN diag {w} Y T
N does not

need to equal the unity matrix, but must be well-conditioned. Usually,

suitable sampling grids are over-determined. With properly chosen weights

w, the condition number gets better and the approximation error is more

uniformly distributed.

6. Regularized (weighted) least-squares, discarding linear dependencies can help

if the matrix inversion is ill-conditioned for the required order N. This

is mostly due to unevenly distributed sampling nodes or missing parts on

the sphere. Exclusion of linearly dependent rows from YN or forming new

harmonics can regularize the matrix inversion. Exclusion is done either

by iteratively removing the harmonics that are most correlated over the

sampling grid YNY
T

N or by exploiting a priori knowledge based on spherical

harmonic symmetries. Alternatively, a regularized inversion using reduced

sets of base functions can be found by eigenvalue decomposition that yields

excellent approximations. Some of these transforms, however, may require

relaxation of the general assumptions about band- and angular-limitation of

the data on the sphere.

7. Exact sample match, minimum spectral-power transform can be applied if

more spherical harmonics are analyzed than there are sampling points (N +

1)2 > L. Hereby, only a partial band-limitation is assumed, but all angular

samples can be represented accurately. The minimization that ensures a

solution creates valleys between the sampling nodes, the depth of which

increases with N.

8. Direct transform on a triangulated mesh is a technique that assumes discrete

distributions within spherical triangles. These triangles can be transformed

analytically at unbounded spherical bandwidth N without any requirements

on the sampling. However, any reduction of N leads to approximations of

the distribution on the sphere. This approach could be thought of as being

a type of sample-and-hold technique for the spherical harmonics transform.

There is recent literature on Spherical Wavelets cf. [FW97, MP05, AV99,

ADJV02, SS95, Les07]. The key problem is how to determine (bi-)orthonormal

wavelets for discrete spheres by lifting schemes or sampling of continuous wavelets.

Some works use subdivisions of Platonic solids as sampling strategy. It seems a

high degree of symmetry has to be provided by the sampling grid. Since in terms

of the Helmholtz equation spherical harmonics decompositions are required, spher-

ical wavelets are not the first method of choice herein.
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Another interesting source for interpolatory DSHT on the (N + 1)(2N + 2)

Gauß-Legendre grid can be found in [Boy00]. On this grid cardinal functions are

known, which are zero at all sampling nodes except for one. Using the spherical

harmonics representations of all cardinal functions, a one-to-one correspondence,

i.e. interpolation, can be established at the sampling nodes.

4.2.2 Hyperinterpolation on the Sphere

Sloan and Womersley [SW99, WS01, SW04] extensively study the properties of

several approaches of obtaining optimal sets of sampling nodes. Essentially, they

introduce the term hyperinterpolation and describe polynomial interpolation on

the sphere instead of approximations like quadrature or least-squares. The key

difference is that interpolation exactly represents all the values at the given nodes

without approximation errors. For this purpose the L = (N + 1)2 nodes sampling

the spherical harmonics must lead to a well-conditioned full-rank matrix YN, so

that matrix inversion is feasible

γN =
(
Y T

N

)−1
g. (235)

The authors present an extensive list of node configuration they computed for the

orders N = 1, . . . , 191. The numerical optimization efforts to obtain suitable sam-

pling nodes greatly exceeds the efforts for orthonormal sampling nodes (quadra-

ture). This kind of critical sampling is generally not orthonormal Y T
N 6= Y −1

N , but

it allows for exact inversion.

4.2.3 Quadrature

The computationally most efficient way to obtain a spherical harmonics transform

from discrete points on the sphere is called quadrature - for higher dimensionality

often referred to as cubature. Basically, quadrature assumes a spherical bandwidth

of the measured spherical distribution limited by the spherical harmonics order

N. In particular, a quadrature rule defines an appropriate set of quadrature nodes

and weights on the sphere {θl, wl} for a particular N. What makes quadrature

particularly interesting is its simplicity. It does not require matrix inversion, which

can be advantageous for large numbers of nodes L.

Quadrature with equal weights (orthogonal sampling). In the simplest

case, quadrature is equally weighted wl = 1. Equal-weights quadrature nodes with

L points will usually not work above a prescribed truncation number N. In many

cases, quadrature only supports orders lower than the highest (over-)determined

order N < Nmax = ⌊
√

L− 1⌋. Unlike every equidistant distribution of points on a
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circle, there are only a few regular samplings on the sphere that are orthogonal.

The quadrature with equal weights is defined as

γN = YN g. (236)

Equal weights quadrature (1): Platonic sampling. For the 5 Platonic

solids (tetrahedron, hexahedron, octahedron, dodecahedron, icosahedron) that are

known to be the only 5 strictly regular sampling grids on the sphere with L =

{4, 8, 6, 20, 12} points, the orthonormality of the spherical harmonics YN Y
T

N = aI

holds for values of N at most N ≤ {1, 1, 1, 2, 2}. All Platonic samplings except for

the tetrahedron, which has L = (Nmax + 1)2 points, are over-determined. There-

fore, they allow for approximate reconstruction of the sample values only. The

dodecahedral grid with its L = 20 nodes is neither a quadrature with equal, nor

with unequal weights for the highest order N = 3. Although the spherical har-

monics up to N = 3are already over-determined for the dodecahedral nodes, they

are only a quadrature for N = 2.

Equal weights quadrature (2): spherical t-designs. In another terminol-

ogy, equal-weights quadrature rules are called spherical t-designs. Most promi-

nently in this field, Fliege and Maier [FM96] have provided interesting proofs on

the existence of such cubature/quadrature formulae for different orders.

Moreover, Hardin and Sloane [HS96] show a detailed list of t-designs and their

correspondence to known Platonic/Archimedian polyhedra. They also explicitly

give several t-designs for large N. These examples are defined by K-points lying

within a single geodesic pentagon of a dodecahedron, which can be completed to a

set of L = 12K by utilizing the icosahedral symmetries. There is also a very deep

field of spherical codes1, lattices and packing problems (Conway, Sloane [CS99],

Martinet [Mar03]) associated with this analytical approach, also considering the

question: If any, how many equal weights quadrature rules exist for the order N ?

Weighted quadrature. Extending the quadrature rule by quadrature weights

w, the projection for the transform becomes:

γN = YN diag {w} g. (237)

The weights w are used to enable orthonormality of the sampled spherical harmon-

ics: YN diag {w}Y T
N = I. Probably the most famous rules, for which weighted

quadrature works are:

1As far as understood here, a spherical code denominates generator polynomials defined on

the spherical surface S2 having spherical periodicity; these polynomials are used to generate the

quadrature nodes.
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1. the equi-angle quadrature [DH94, Sne94, MNV97], for which the equator is

sampled with 2N + 1 longitude-circles and the longitude in 2N or 2N + 1

equally spaced latitude-circles.

2. and the Gauß quadrature with (N + 1)(2N + 2) nodes [Moh99]. For Gauß

quadrature, only the azimuth is equidistantly sampled. The grid-lines in

elevation lie at the zeros of the Legendre polynomial PN+1.

3. Lebedev [Leb77, Del96] sampling (octahedral symmetry), Fliege [FM96]

nodes, Hardin and Sloane [HS96] (icosahedral symmetry).

For the longitude-latitude grids (1 and 2), there exist fast transform imple-

mentation, as shown in [DH94, SJ96, SB96, MNV97, HRKM98, PST98, Moh99,

IBM01, KR03, SS03, HKR04, KP03].

In the work of Mhaskar [MNW00], the existence of weighted quadrature in

general has been shown. For any set of nodes on the sphere and an order N,

which is limited by a separation measure of the quadrature nodes, there exists a

positively weighted quadrature. Equal weights are only feasible in special cases.

Quadrature weights. The question remains of how to obtain suitable weights.

In [MNW00] or [DH94], the property of the weights is defined using quadrature

over a constant value 1, which results in the zero-order coefficient
√

4π only:






√
4π

0
...







= YN diag {w} 1 = YNw, (238)

⇒ wmv = Y T
N

(
YNY

T
N

)−1







√
4π

0
...






. (239)

The solution of the under-determined system Eq. (238) is given in Eq. (239), which

is the minimum variance inversion. Even if the equation is usually regular for

suitable N, it is necessary to check whether YN diag {w}Y T
N = I, i.e. quadrature,

is feasible.

A strict definition of the quadrature weights can be obtained from Eq. (238)

by left multiplication with Y T
N . This definition is given in the various works of

Fliege and Maier, Sloan and Womersley [FM96, SW99, WS01, SW04] wherein G

is denoted as reproducing kernel/Gram matrix :

G = Y T
N YN (240)

1 = Gw. (241)
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Since N must be fairly low in many cases, the matrix G will usually be singular.

Sloan and Womersley describe that even optimal sets of nodes tend to give a

singular matrices G [SW99, WS01, SW04].

According to Sneeuw [Sne94], for longitude-latitude sampling grids only the

classes of zenith angles ϑ′i are required to write down this first Neumann method

as set of equations:











1 · · · 1 1

cos(2ϑ′1) · · · cos(2ϑ′M) −1

cos(4ϑ′1) · · · cos(4ϑ′M) 1
...

...
...

cos(2Mϑ′1) · · · cos(2Mϑ′M) ±1























w′
1

w′
2
...

w′
M

w′
M+1












=












1

−1/3

−1/15
...
−1

4M2−1












. (242)

The weights for the individual points are obtained by division of the corresponding

longitude weight wi with the number of latitude subdivisions K:

wl = w′
i/K. (243)

Note that this approach also yields good weights in many cases for that quadrature

is not feasible.

4.2.4 Transforms by Least-Squares

The transform using least-squares (best fit in the least-squares sense) represent

a class of transforms different to quadrature or hyperinterpolation. In general,

its requirements on the set of sampling nodes are not as strict. Essentially, the

transform by inversion only requires a regular least-squares inverse, which means

the spherical harmonics sampled at L nodes must have rank (N + 1)2 and can

therefore be orthogonalized. Note that in many cases this will only work for N

smaller than Nmax = ⌊
√

L − 1⌋, which may, however, take larger values than for

quadrature.

Least-squares. Least-squares fitting of discretized spherical harmonics seems

to be suitable for DSHT because it works more flexibly with respect to given

sampling nodes than quadrature. Instead of using the discrete vector projection

on the sampled spherical harmonics, the vectors of the least-squares inverse are

used for transformation [HG06]:

J(γN) =
∥
∥g − Y T

N γN

∥
∥

2 → min ⇒ ∂

∂γT
N

J(γN) = YN g − YN Y
T

N γN
!
= 0,

=⇒ γN =
(
YN Y

T
N

)−1
YN

︸ ︷︷ ︸

:=(Y T
N )

+

g. (244)
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The choice of the sampling nodes is very important as it determines whether the

matrix YNY
T

N is singular or not. In addition, if given a non-uniform set of sampling

nodes, the least-squares error is also non-uniformly distributed; errors emerge in

the case of distributions that are not band-limited g 6= Y T
N γN.

Weighted-least-squares. In terms of the color of the error, i.e., the unifor-

mity of the error distribution on the sphere, a weighted least-squares approach

allows to influence the error per surface, using a vector w of positive weights and

minimization of (gH − γH
N YN) diag {w} (g − Y T

N γN)→ min:

γN =
(
YN diag {w}Y T

N

)−1
YN diag {w}

︸ ︷︷ ︸

:=(Y T
N )

+w

g. (245)

Inserting a quadrature rule into the above expression is equivalent to quadrature

itself. However, weighted least-squares often provides transforms with larger or-

ders N than accessible with quadrature.

The existence of a well-conditioned weighted least-squares transform has been

shown in [KKP07]. For this purpose, the order N has to be bounded by separation

measures of the given sampling grid. The weights w are based on the areas

of Voronoi cells associated with the sampling nodes, as described in the next

paragraphs.

Weights for the nodes. Usually, the weights for quadrature defined in the

above sections Eqs. (239), (241), (242) show good performance for weighted least-

squares. However, the inversion of G in Eq. (241) is usually ill-conditioned for

large orders. As a rough work-around, a double minimum-variance inversion of

the factors Y T
N and YN in G can be used:

w =YN

(
YN Y

T
N

)−2
Y T

N 1 (246)

Alternatively, G can be inverted using eigendecomposition. Preceding the inver-

sion, a truncation to the relevant eigenvector-eigenvalue pairs provides regulariza-

tion. Moreover, the areas of the spherical longitude-latitude compartments can be

used as weights. These are easily determined geometrically for the zenith angle ϑi

by

w′
i =

1

2

[

cos

(
ϑi−1 + ϑi

2

)

− cos

(
ϑi + ϑi+1

2

)]

. (247)

For arbitrary sampling, such area weights can be computed using Voronoi cells

on the sphere [AP85, KKP07, DFG99, DGJ03, Bur06]. Voronoi cells are the set of

the areas around each node on the sphere bounded by the symmetry lines to the
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neighboring nodes. The Delaunay triangulation is the dual to the Voronoi cells

as it consists of lines connecting the nodes with their neighbors. The algorithms

on the websites of John Burkardt [Bur06] (STRIPACK, Robert Renka) and Jens

Keiner [Kei07] (CSTRIPACK) can be used to compute Voronoi cells/Delaunay

triangles on the sphere.

4.2.5 Regularized Least-Squares

The continuous spherical harmonics are only orthonormal on the complete and

unweighted sphere. Given only finite segments of the sphere, or more generally a

mask a(θ) selecting a bounded spherical domain, yields linear dependencies among

the spherical harmonic functions
∫

S2

a(θ) Y m
n (θ) Y m′

n′ (θ) dθ 6= δnn′δmm′ , ∀a(θ) 6= 1. (248)

This problem is important as incomplete sampling drastically reduces the feasible

order N of least-squares transforms.

Given prior knowledge about a simple finite spherical segment, i.e., a hemi-

sphere, deterministic harmonics selections can be found using symmetry properties

of the spherical harmonics, see Fig. 18 and [PZ09]. For a hemisphere, only the har-

monics with even or odd index (n−m) could be used, which either describe even

or odd symmetry with respect to the z-axis and both being orthogonal. Similarly,

symmetries regarding the y-axis and rotational symmetries can be described, cf.

Fig. 18.

Alternatively, independent base-functions for arbitrary fractions of the sphere

do not suffer from interference artifacts obtained by symmetry assumptions, and

they further have the advantage of providing a minimum energy representation on

the unused portion of the sphere [PZ09]. This superior formulation can be found

in satellite geodesy. The problem occurs with satellites since there is frequently

no way of keeping them near the poles of the earth. Solutions can be found in the

works of Sneeuw, Baur, and van Gelderen [SvG97, BS06], Albertella, Sansò and

Sneeuw [ASS99], Simons, Dahlen and Wieczorek [SD06, SDW06, DS07] under the

key-words Polar-Gap Problem and Slepian functions. In principle, the functions

described in these works are a selection of functions that support decompositions

of finite domains on the sphere. An important approach has been presented in

Pail, Plank, and Schuh [PPS01] and has been considered in [PZ09]. Using an

eigendecomposition of the matrix YNY
T

N helps finding useful orthonormal base

functions that have full rank, in order to obtain a well-defined transform. It is

also advisable to rotate the new space of base-functions to improve their relation

to the spherical harmonics. For details on the solution the reader is referred

to [PZ09].
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(a) even and odd symmetric wrt. z, e.g. for decompositions on hemispheres.

(b) even and odd symmetric wrt. y, e.g. for decompositions on hemispheres.

(c) rotationally symmetric wrt. z

(d) even symmetric functions for quarter and eighth spheres.

Figure 18: Examples of spherical harmonics symmetries.
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Similarly, but with a somewhat different idea, Hannemann et al use a singular-

value decomposition (SVD) to obtain a regularized system inversion [HLDS07,

HD08] they name Multipole-Matching. Furthermore the work of Zhang et al de-

scribes solutions [ZKA08].

4.2.6 Exact Sample Match, Minimum Spectral-Power Transform

If all the samples on the sphere shall be represented correctly in the angular

domain, but no hyperinterpolation is available, another optimization approach is

feasible. In this case, the order is chosen to be high enough N >
√

L− 1 to make

the system under-determined, having infinitely many adequate solutions. Unique

coefficients are found by minimization of the wave-spectral power ‖γN‖2

‖γN‖2 → min. (249)

subject to: g
!
= Y T

N γN, ⇒ J(γN,λ) = ‖γN‖2 + (gT − γT
N YN)λ,

with the optimization error J(γN,λ) and the Lagrange-multipliers λ. Optimiza-

tion yields (cf. [HG06]):

I :
∂

∂γT
N

J(γN,λ) = γN,opt − YN λ
!
= 0, ⇒ γN,opt = YN λ,

II :
∂

∂λT
J(γN,λ

T) = g − Y T
N γN

!
= 0,

with I⇒ λopt = (Y T
N YN)−1 g,

=⇒ γN,opt = YN(Y T
N YN)−1 g. (250)

Note that the solution is not exact anymore in terms of band-limited input patterns

gN and its result depends on the orientation of the sampling nodes in space.

Because of the minimization wrt. power, cavities appear between the sampling

nodes (Parseval theorem, cf. Chap. 2, Eq.(30)).

As a variation, a weighting matrix diag{̟N} can be introduced, controlling

these cavities by differently weighting the spectral powers at each order

γT
N diag{̟N}γN → min (251)

γN,opt = diag{̟N}YN (Y T
N diag{̟N}YN)−1 g.

4.2.7 Direct Spherical Transforms

Mousa, Chaine, Akkouche, and Galin [MCAG06a, MCAG06b, MCAG07] show a

way to utilize Stokes’ or the curl theorem to compute a DSHT on the sphere.

Thereby they reduce the surface integral over individual triangular patches to the

constituent line integrals. This technique can be adopted to compute discrete

spherical harmonics transforms of acoustic signals on the sphere, given a suitable

Delaunay triangulation between the points of observation.
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4.2.8 Sampling Strategies

Rob Womersley provides an illustrative overview of several sampling strategies on

the sphere on his website [Wom06]. Another nice overview can be found on Anton

Sherwood’s website [She07]. Furthermore the website of Hugo Pförtner is inter-

esting [Pfö06]. In fact, there are many strategies based on packing and covering

the spherical surface, volume maximization, and area equalization, cf. [SHS00].

The main objective is to distribute sampling points evenly across the sphere by

optimization or analytic solutions. Optimization criteria include: minimization of

the overlap between circles centered around the nodes, the minimization of the

potential energy of repelling particles, equalization of the Voronoi cell sizes, maxi-

mization of the volume of a convex polyhedron, and minimization of the condition

number of the transform.

Optimization based on minimum energy criterion. Fliege and Maier [FM96]

find sets of points converging towards quadrature nodes, using an optimization

method. Their basic assumption can be thought of as a conducting spherical sur-

face, onto which a set of L mutually repelling electrons are placed. In a state of

minimum energy, those electrons will distribute uniformly. Some results based on

the minimum energy approach can be found on Rob Womersley’s website [Wom03].

A more flexible approach uses the Riesz s-Energy to find the minimum en-

ergy points. The method has been employed by Rakhmanov, Saff, Zhou, Hardin,

Brauchart [RSZ94, RSZ95, SK97, HS04, BHS08], also for various types of mani-

folds (e.g. the poppy seed bagel problem [Orl05]). The Riesz s-Energy assumes an

adjustable law for the repelling forces, proportional to the distance with 1/ds with

the parameter s. For the exception of s = 0, the logarithm −log(d) is used as

repelling force. They prove that the minimum energy as well as the separation

distance of the points in equilibrium is bounded for a given s.

Spherical centroidal Voronoi tessellation. Du et al [DFG99, DGJ03] show

a strategy for sampling (also the sphere) using an iterative algorithm based on

Voronoi-partitions. If the mass centers of the Voronoi cells are identical to the sam-

pling nodes, the nodes generate a centroidal Voronoi tesselation (CVT). Several

approaches are investigated that find a CVT. CVT is also applicable to anisotropic

sampling densities. A source code of STRIPACK (Robert Renka) for spherical

Voronoi partitioning can be found at John Burkardt’s website [Bur06].

Sampling based on spherical designs/quadrature/hyperinterpolation.

The t-designs of Hardin, Sloane, and Smith can be found on their website [SHS00].
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From the given K points, 12K can be computed when applying the underlying

icosahedral symmetry. Their computations are based on solving analytic equa-

tions numerically.

I. V. Lebedev [Leb77] derived quadrature rules for many orders based on the

assumption of octahedral symmetry for high-order systems, with an analytical

approach, cf. [Del96]. This assumption is utilized to break up the solution of the

non-linear equations for quadrature nodes and weights into smaller subsystems

with easier solutions. The arithmetic accuracy is defined to be η = (N+1)2/(3N).

From the solutions in the primary octant, a complete set of nodes is obtained by

the 8 permutations of the Cartesian coordinates signs. Some other works from

De Wit [Wit00], Sangwoo Heo and Yuan Xu [HX01] were found dealing with fully

symmetric quadrature rules, which is claimed to be more general. A more re-

cent work of Shamsiev [Sha06] gives an excellent overview over other works on

cubature/quadrature formulae mostly in Russian language and presents proofs on

the existence and derivations of quadrature/cubature formulae on n-dimensional

hyper-spheres. For further details, the advanced reader is also referred to Kuper-

berg’s article on numerical cubature [Kup06], Conway and Sloane’s book [CS99]

as well as [Mar03] on sphere packings, codes and lattices.

The nodes computed by Sloan and Womersley [SW99, WS01, SW04] and the

corresponding quality measures can be found on the website [Wom03]. These

nodes have been computed for orders 1 up to 191 and are based on maximization

of the determinant of YN. Since this matrix is very likely to be singular, other

optimization approaches, i.e. the minimum energy points, were employed by the

authors to find stable initialization points for the optimization procedure.

Tessellation of Platonic solids. Within the category of weighted quadrature

rules, the Archimedian solids play an important role. For instance, the truncated

icosahedron (Bucky/soccer-ball) with 32 nodes, but also other variants of trun-

cated Platonic polyhedra offer reasonable nodes for quadrature with near-uniform

sampling the sphere. On a similar basis, tiling approaches can be used to con-

struct grids from Platonic solids. Some examples are Tegmark’s icosahedron-based

method for discretization of the sphere [Teg96], the Platonic-solid based Discrete

Global Grid Systems [SWK03], and the octahedron-based HEALPIX [GHB+05].

All of these approaches offer flexible and uniform sampling. However, there sam-

pling does not exist for all cardinal numbers of sample points. From the imple-

mentation perspective and some other practical aspects, the HEALPIX [GHB+05]

scheme seems to offer some advantages due to the hierarchical distribution the

nodes.
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Longitude-latitude grids. To accomplish simpler layouts, several other quadra-

ture rules in a longitude-latitude grid can be defined. The most famous quadrature

rule is the Gauß quadrature [Sne94, SB96], which uses equi-angular sampling for

azimuth and the zeros of the PN+1 (cos ϑ) polynomial as sampling grid for the

elevation angle ϑ. This layout is similar to an equi-angle grid, but has non-

equidistant nodes in latitude (elevation). Most commonly, the equi-angle [DH94,

SB96, MNV97] grid is an equidistant sampling on the sphere with ϕk = 2π
Mϕ−1

k

and ϑl = 2π
Mϑ−1

l.

Some effort has been taken to create fast versions of this type of transform

by separation of the transforms in the angular variables [DH94, SJ96, SB96,

MNV97, HRKM98, PST98, Moh99, IBM01, KR03, SS03, HKR04, KP03]. These

approaches are mainly based on fast Fourier-transforms on the latitude circles,

followed by a Legendre-transform in the longitude dimension. Intermediately, a

fast cosine-transform, i.e. a transform into Chebychev-polynomials Tn (cos (ϑ)) =

cos (mϑ) is employed. Due to sparse relations between Legendre- and Chebyshev-

polynomials Pn (µ) and Tn (µ) and the Chebyshev polynomials Tn (µ) fast trans-

forms are possible. The recurrence relations of the polynomials is used to obtain

coefficients for m 6= 0.

Igloo/rectangular equal area grids. Rakhmanov and Saff [RSZ94, SK97],

Crittenden [CT98b], and Paul Leopardi [Leo06a, Leo06b] use rectangular parti-

tions on the sphere with equal area, aligned in latitude rings. These, so called

igloo- or equal area samplings, follow from the objective of partitioning the sphere

in equal area rectangular compartments. A MATLAB toolbox from Paul Leopardi

can be found on the website [Leo07]. This toolbox allows for equal area parti-

tioning of the n-dimensional unit-sphere into a freely chosen number of sampling

points/areas.

Generalized spiral points. Spirals with subdivisions of the parameter range

are also used to distribute points on the sphere. The approach has been shown

to support minimum energy properties in [RSZ94, SK97]. A recent improvement

has been posted online by Knud Thomsen [Tho07], see also Robert Bauer [Bau00,

Bau01]. The advantage of the generalized spiral points is their analytic description,

which easily leads to sampling nodes by simple recurrence.

4.2.9 Sampling Performance Examples

In the following paragraphs a few measures to compare different sampling methods

are discussed. The Figs. 21 and 22 give some examples.
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Sampling efficiency comparison. Table 2 shows a comparison of different

sampling methods with respect to the number of points required. In order to

compare the different methods, the condition number κ = cond
{
YN Y

T
N

}
for

least-squares inversion of the sampled spherical harmonics has been taken as a

measure of numerical quality. Each sampling method is adjusted so that the

smallest possible number of points L lets the condition number fulfill κ ≤ 1.2κhi.

κhi is the condition number when using hyperinterpolation, and Lhi = Lmin =

(N + 1)2 is the lowest possible number of nodes. Using weights w does not cause

substantial change of the values in Table 2, except for the condition number of

the Gauß-Legendre grid, which turns into κw = cond
{
YN diag {w}Y T

N

}
= 1.

The fraction Lmin/L can be used to describe the sampling efficiency. Naturally,

hi [Wom03] eq [Leo07] sp [RSZ94] gl [Moh99] hp [GHB+05]

L Lmin 1.23Lmin − 3.49 1.16Lmin + 2.6 2Lmin 1.49Lmin + 12.9
±1.34 ±3.36 ±3N

κ 2.4 < κ < 16 1.9 < κ < 4.8 2.6 < κ < 18 1.8 < κ < 7 1.2 < κ < 3.4

Table 2: Comparison of different sampling methods, with Lmin = (N + 1)2 for the
orders N = 3, . . . , 15 and the condition number κ = cond

{
YN Y

T
N

}
. The sampling

methods were adjusted to achieve a similar κ than the hyperinterpolation method, cf.
Fig. 20. (hi=hyperinterpolation, eq=equal area partitions, sp=generalized spiral points,
gl=Gauß-Legendre, hp=healpix )

hyperinterpolation is most efficient. Considering the other sampling methods, the

equal area partitioning scheme performs best for N ≤ 8. Above N = 8, the

generalized spiral points slightly outperform the equal area partitioning. Fig. 19

gives an overview.

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

N

L m
in

/L
w

Sampling Efficiency

hi
eq
sp
hp
gl

Figure 19: Sampling efficiency using different sampling methods. The condition num-
ber has been constrained to match closely to hyperinterpolation. (hi=hyperinterpolation,
eq=equal area partitions, sp=generalized spiral points, hp=healpix, gl=Gauß-Legendre)
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Figure 20: The condition number κ plotted for different N = 1, . . . , 9 exhibits
abrupt transitions from well- to ill-conditioned for all sampling methods designed for
N = 7. (hi=hyperinterpolation, eq=equal area partitions, sp=generalized spiral points,
hp=healpix, gl=Gauß-Legendre)

Aliasing error comparison. In order to evaluate aliasing of different sampling

methods, we have to define a measure for aliasing errors. A description of aliasing

considers the sampled spherical harmonics Y = YP without truncation, i.e. P →
∞, and compares it with results obtained for YN with finite N <∞. Given a broad-

band spherical harmonics input spectrum γ, we obtain a discrete distribution by

g = Y T γ. Performing a decomposition of g into band-limited harmonics YN as in

Eq. (245), full suppression of higher-order harmonics n > N is desirable. Ideally,

the desired truncated spectrum γN remains:

γN = Y T+w

N Y T

︸ ︷︷ ︸

!
=(I, 0)

γ. (252)

The total squared-errors ‖e(γ)‖2 depends on the error system E and the broad-

band spherical harmonics spectrum γ, cf. [ZPS08].

‖e (γ)‖2 = γTETEγ, (253)

E =
[(
Y T

N

)+w
Y T − (I, 0)

]

. (254)

Note that for n ≤ N the system works perfectly and yields vanishing errors.

Consequently, only errors in the columns representing n > N need to be considered.

The total squared-errors of high-order components σ2
enm

with n > N has been

presented in [RWB07] to illustrate the aliasing topology:

σ2
enm

=

∥
∥
∥
∥
∥

(
Y T

N

)+w
Y T










0
...

1
...









← nm

∥
∥
∥
∥
∥

2

. (255)
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Figs 21 and 22 show these aliasing-maps in the right column for the selected

sampling examples. It is clearly visible that partial aliasing suppression occurs for

over-determined (=inefficient) sampling methods, e.g. Fig 22.

Aliasing vs. ideal truncation example: Shifted monopole source. The

radiation of a monopole source that is displaced from the origin to r0, cf. Eq. (85),

exhibits substantial higher-order energy proportional to jn (kr0). However, per-

forming a discrete decomposition with perfect aliasing-suppression, discards high-

order components. Consequently, perfect aliasing-suppression attenuates monopoles

that are shifted outside the origin. Whether a partial aliasing suppression or the

uniform (friendly) aliasing of hyperinterpolation is more acceptable (Fig. 21) is an

important question. It can be discussed regarding the centering problem presented

in Chapter. 5.
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Figure 21: Images of different sampling methods suitable for N = 7 have been
plotted using CSTRIPACK [Kei07]. (hi=hyperinterpolation, eq=equal area partitions,
sp=generalized spiral points).
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Figure 22: Different sampling methods suitable for N = 7. (hp=healpix, gl=Gauß-

Legendre).
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Chapter V

ANALYSIS OF SOUND-RADIATION USING

SURROUNDING SPHERICAL

MICROPHONE ARRAYS

Introduction of sound-radiation analysis. The most comprehensive and still

highly relevant reference works on directivity of musical instruments have been au-

thored by Jürgen Meyer [Mey66, Mey72, Mey08, Mey09]. For these contributions,

the body directivities of various instruments have been measured using a turntable,

an exciter, and a microphone to capture one horizontal and two vertical slices. The

measurement results were analyzed and drawn by hand, using a curve-template.

The drawings are valuable for a large group of people: musicians, audio engineers,

room acousticians, etc..

Later, Gabriel Weinreich and Eric Arnold [WA80] show a method of how to

determine the acoustic radiation of sound sources that is based on spherical acous-

tic holography. Using a violin with artificially excited strings as a sound source,

they measure the sound in every direction of radiation, at two radii, Fig. 23(a).

The theory behind these measurements is very elaborate and its contemporary

application, though simplified, is found in this thesis.

Another early and notable work about the directivity of sound sources has

been contributed by Franck Giron [Gir96]. It introduces a theoretical framework

and many case studies on musical instruments. Interestingly, Giron presents two

approaches for the decomposition of directivity patterns: the spherical harmonics

transform, and the monopole-source synthesis. Using a spatial correlation and

a search algorithm, radiation patterns are decomposed into an arrangement of

monopole-sources, each of which driven with individual amplitude and phase. A

measurement setup is shown in Fig. 23(b)

Further works about capturing directivity responses of musical instrument bod-

ies have been published by Perry Cook, Dan Trueman [CT98a], and Georg Essl,

George Tzanetakis [CETT98]. These papers present an interesting way of captur-

ing the radiation by a surrounding icosahedral spherical microphone array that

takes simultaneous recordings, which is considered being the most versatile ap-

proach here, see Fig. 23(c). Furthermore, they present an LPC-based method to

calculate spatial residuals and resonances detected at the individual array micro-

phones.
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(a) Ann Arbor, Michigan,
Weinreich/Arnold [WA80]

(b) Bochum, Giron [Gir96]

(c) 12 ch., Princeton [CETT98]

Figure 23: Early works on sound-radiation capture of musical instruments in Ann
Arbor, Bochum, and Princeton. The first figure shows a virtual dual sphere array.

Felipe Otondo, Jens Holger Rindel, Linda Parati, and Brent Kirkwood [OR02,

ORC+02, OR03, PO03, OK03, OR04, OR05, RO05] have authored several pub-

lications concerning measurement of directivity as well as involving directivity

patterns in room acoustics simulations. They distinguish between averaged and

tone-specific directivity patterns. Several multi-channel directivity recordings of

musical instruments were captured, which were followed by psychoacoustic evalu-

ation of the auralized results. Interestingly, they could show significant differences

in the perceived timbre using either averaged or tone-specific directivity patterns,

whereas the differences in estimation of perceived spaciousness was not as clear.

Lily Wang and Courtney Burroughs [WB99, WB01] did insightful near-field

acoustic holography studies on a bowed violin, showing the radiation pattern.

Wang and Michelle Vigeant [VW04, WV07, VWR07, VW07] published exper-

iments on evaluating the perception of directivity in auralization. Their work
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indicates that multi-channel directivity recordings increase the realism of single

sources, whereas in the auralization of instrumental ensembles there was no sig-

nificant improvement of realism due to multi-channel source directivities.

Surrounding spherical microphone arrays. More recently than the first

synchronous spherical recordings [CT98a, CETT98], Martin Pollow [Pol07] (ITA

Aachen) published a way of decomposing directivity patterns into spherical har-

monics with a magnitude only approach. This approach uses standard nonlinear

optimization techniques in order to get an improved magnitude fit. In the thesis

of Stefan Reuter [Reu08] and the work with Dirk Schröder, Gottfried Behler and

Ingo Assenmacher [SRBA08], a way of obtaining high-quality directivity record-

ings is demonstrated, see Fig. 24(a). Furthermore, the paper [PBM09] considers

the question of phase alignment and centering.

Tapio Lokki, J Pätynen, and Ville Pulkki [LPP08, PPL08] (Espoo) took direc-

tional multi-channel recordings of individual orchestra instruments playing their

part in an anechoic room, synchronized by a conductor, see Fig. 24(b), for the

purpose of room acoustics auralizations. From Tapoi Lokki, I received the arti-

cle [PLar] that shows detailed study on the average directivities of the instruments,

which will be published soon.

During the finalizing steps of this thesis, a 64 channel microphone array has

been constructed in Graz [Hoh09], see Fig. 24(c). Other microphone arrays that

have been used in this thesis, cf. [ZS06, ZSNH07, SZEH07], are depicted in the

later sections, Figs. 32(a), 30(a). In addition, I gratefully received saxophone

recordings from the researchers at ITA Aachen, which are part of the following

analysis; the results were presented in [Zot08].

Side note on compact spherical microphone arrays for incident fields.

This short insertion provides a brief overview over recent literature on compact

spherical microphone arrays for incident sound field capture. Even if not all the

involved functions match exactly the problems to be solved in this work, this field

has evolved over a longer period of time and is helpful to understand surrounding

spherical microphone arrays. The essential references have been recently gathered

thoroughly by Wookeun Song, Wolfgang Ellermeier and Jørgen Hald in [SEH08].

The following short list mentions some of the most important works in this

field: Jens Meyer and Gary Elko [ME02, ME07], Boaz Rafaely [RP04, Raf04,

Raf05, RWB07], Ilya Balmages [BR04, BR07], Munhum Park [PR05], Ramani Du-

raiswami [DLZ+05], Zhiyun Li [LDG04, Li05, LD06], Svend-Oscar Petersen [Pet04],

Heinz Teutsch [Teu07], Séebastien Moreau [Mor06, MDB06], Jêrôme Daniel [Dan07],

Stéphanie Bertet [BDP+07], Anton Schlesinger [SGL+07], Gover and Stinson [Gov04,
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(a) 32 ch., Aachen [Reu08]

(b) 20+2 ch., Espoo [LPP08] (c) 64 ch., Graz [Hoh09]

Figure 24: Surrounding spherical microphone arrays.

Gov06], Abhaya Parthy, Craig Jin, and André van Schaik [PJvS06].

5.1 Capture and Analysis of Sound-Radiation

Although physical models can be built describing both sound and radiation of

sound sources, cf. [FR91, TR03, Smi06], musical acoustics and music may skip

the extensive modeling effort by using measurements/recordings with surrounding

spherical microphone arrays for radiation capture instead. To label the captured

quantity, the term sound-radiation signal may be introduced.

5.1.1 Sound-Radiation Signal

Within this work, the term sound-radiation signal is used as denominator ex-

pressing a sound signal originating from a sound source observed at a given radius

in the sound field. To cover all directions of sound-radiation, sound-radiation
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signals need to provide information about the directional dependency of the radi-

ated sound-signal. Consequently, a sound-radiation signal x(θ, t) depends on the

spherical angles θ and the time t.

Discrete sound-radiation signal. In most practical embodiments, a sound-

radiation signal x(θ, t) will be recorded at discretized angles and times, only.

Hence it is expressed as a multichannel signal

x[η] =







x1[θ1, η]
...

xL[θ1, η]







(256)

observable at the discrete angles θ = θl, l = 1, . . . , L, and times1 η/fs, η ∈ Z.

Requirements on representations and models of sound-radiation. Dis-

crete sound-radiation should be convertible to representations that allow for dis-

crete re-sampling or continuous reconstruction of sound-radiation. Moreover, there

is also interest in decompositions into other parametric models of sound-radiation.

In summary, all these decompositions shall yield the means to perform manipula-

tions. These could be for instance:

1. time-frequency modifications:

• discrete-time re-sampling, continuous-time reconstruction

• time / pitch / frequency / dynamics manipulation

• filtering / vocoding

2. space-frequency-domain modifications:

• discrete-angle re-sampling, continuous-angle reconstruction

• translation / rotation / rotational matching / translational tracking

• angular multiplication and convolution

3. space-time-frequency modifications:

• cross-directivity-pattern synthesis

• real-time:

– directivity-analysis / synthesis / modulation / see also 2.

– full parametric rendering and auralisation

1Usually, the discrete-time index is denoted by n instead of η, [OSB99]. However, n is already

in use as a spherical harmonic index within this work.
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The third point on this list seems to be both most challenging and exciting. How-

ever, it becomes necessary to regard sound-radiation in a time-frequency repre-

sentation, with all its drawbacks concerning time and frequency resolution. Nev-

ertheless, spatio-temporal-spectral representations should be considered as being

perceptually important, actually necessary. Many of the requirements will be

solved in the remaining parts of this chapter.

5.1.2 Discrete Transform and Continuous Expansion of Sound-Radiation

Given a finite set of observation times η = 0, . . . , NDFT−1 at the angles {θl}, x[η]

can be transformed by DSHT into spherical harmonics of the orders 0 ≤ n ≤ N,

and by DFT into a discrete frequency-domain using the index ζ = 0, . . . , NDFT−1

(discrete Fourier transform [OSB99]):

χN[ζ ] = DFT NDFT,η{DSHT N{x[η]}}. (257)

The resulting transform signal χN[ζ ] becomes an (N + 1)2-channel signal.

x[η]

D
SH
T χN[η]

D
F
T χN[ζ]

(a) Discrete capture and transform of sound-
radiation.

NDFT−1∑

ζ=0

χN[ζ ] e
i 2π fs ζ
NDFT

t

χN(t)

SH
E x(θ, t)χN[ζ]

F
SE

yT
N(θ)

(b) Continuous Fourier-series and spherical har-
monics expansion.

Figure 25: Block diagrams describing the discrete-angle and discrete-time sound-
radiation capture and transform, and the retrieval of continuous-angle and continuous-
time sound-radiation using spherical harmonics and Fourier series expansions.

The main motivation for the discrete transform representations is to enable

Fourier series and spherical harmonics expansion (FSE, SHE, see Fig. 25 (b)) over

the continuous variables θ and t:

x(θ, t) = yT
N(θ)

NDFT−1∑

ζ=0

χN[ζ ] e
i 2π fs ζ
NDFT

t
, (258)

hence discrete re-sampling or continuous reconstruction in time and space be-

comes feasible. As a prerequisite for the correctness of the above procedure (dis-

crete transform and continuous expansion), the band-limitedness of the underlying

94



sound-radiation signal x(θ, t) in both frequency and spherical harmonics is neces-

sary.

5.1.3 Functional SIMO-Model of Sound-Radiation

Fig. 26 illustrates a functional SIMO model (single-input multiple-output) for the

sound-radiation signal χN(ω). The model is described by a simple relation:

χN(ω) = γN(ω) · s(ω), (259)

which states that the sound-radiation signal χN(ω) is constituted by a single

s(ω) ·

γN(ω)

χN(ω)

Figure 26: The functional single-input-multiple-output (SIMO) sound-radiation model
is expressed in both Fourier domains (spherical harmonics and frequency), yielding a
sound-radiation signal χN(ω). It consists of a primal signal S(ω) multiplied with the
spherical harmonics radiation pattern γN(ω).

input signal, the primal signal s(ω), multiplied by a frequency-dependent radiation

pattern γN(ω). This model is suitable for single sources only, and as it is linear,

it cannot account for a Doppler frequency shift of sources moving fast.

5.1.4 Spectral Model
Total-Power Spectrogram and Multichannel Partial Tracking

To solve the primal signal and SIMO identification problem, a spectral model has

been utilized for the analysis in [ZSNH07, Zot08]. It is based on the decomposi-

tion of the multi-channel sound-radiation signals into partial-tones, using auditory

analysis and a monophonic total-power spectrogram representation. Note that this

approach is not suitable to retrieve a stochastic noise residual, as described e.g.

in [SS92]. However, it is well-suited to extract radiation associated with partial

tones of a sound.

It is common practice to use short-time Fourier transforms (STFTs cf. [OSB99],

i.e. time-shifted DFT) as an analysis stage for spectral modeling of the partials

of a sound, cf. [MQ86, SS92, WBF+00]. We can also apply this approach in the

microphone-array multi-channel case. One single-channel STFT of the discrete-

time microphone signal xl[η] of the channel l is described as the NDFT-points DFT

along a chain of unit delays with the impulse response δ[η − 1]

xl[τ, η] = xl[η] (⋆δ[η − 1])τ−1 = xl[η − τ ], (260)

xl[ζ, η] = DFT τ {xl[τ, η]}NDFT
. (261)

95



Auditory frequency-warping. In order to obtain a suitable frequency scale

of the spectrograms, the all-pass warping proposed in Smith and Abel [SA99] can

be applied. For that purpose, the signal is running over a chain of all-pass filters

with the impulse response a[η] instead of unit-delays:

xl[τ, η] = xl[η] (⋆a[η])
τ−1 (262)

Assuming a complex exponential of the digital frequency ξ as input signal xl[η] =

ei(ξη+φ0), the change of the signal along the homogeneous chain of elements is

described as the all-pass phase eiτ∠a(ξ) including the position τ on the chain

xl[τ, η] = ei(ξη+φ0+τ∠a(ξ)). (263)

Taking the discrete-time Fourier transform (DTFT) of xl[τ, η] along an infinite

chain of elements τ = 0, . . . ,∞ yields a DTFT spectrum with a peak at ξ′ = ∠a(ξ)

xl(ξ
′, η] = DT FT τ{xl[η, τ ]} = ei(ξη+φ0) δ (ξ′ −∠a(ξ)) . (264)

It is obvious that the complex exponential at frequency ξ is mapped to the DTFT-

location ξ′. Using a finite number of all-pass filters by application of an NDFT

points window function c[τ ], the DFT reads as

xl[ζ
′, η] = DFT τ{c[τ ] xl[τ, η]} =

(

xl(ξ
′, η]

mod
⋆

NDFT

c(ξ′)

)∣
∣
∣
∣
ξ′=ζ′ 2π

NDFT

. (265)

According to the mapping relation given for continuous frequencies ξ′ and ξ, the

linear DFT index ζ maps to ζ ′ by

ζ ′ =
NDFT

2π
∠A

(
2π

NDFT
ζ

)

. (266)

Using suitable all-pass parameters, this frequency mapping can be adjusted to

match an auditory scale, see [SA99].

Auditory masking. For most musical acoustics analyses it should be sufficient

to regard the radiation patterns of audible partials only. For this reason, it is useful

to calculate the auditory masking threshold AMT{|xl[ζ, η]|2} in each microphone

channel l. We define a simple criterion for the audibility of the spatio-temporal

STFT-components |xl[ζ, η]|2:
M∏

l=1

(
|xl[ζ, η]|2 < c · AMTl{|x[ζ, η]|2}

)
=







1: inaudible

0: audible.
(267)

In words: the frequency bin ζ is considered to be inaudible (masked) at the time

instant η for all the channels only if its magnitude stays below the auditory mask-

ing threshold in every channel. c is a constant adjusting the masking threshold;

values in the range −3dB · · · − 22dB were suitable in the simulations.
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The auditory masking threshold is built after applying outer- and middle-ear

filters, cf. [Pfl97, Zot04], e.g. according to Zwicker [ZF99], or Terhardt [Ter98]. In

the implementation used here, the warped-spectrogram was smoothed by moving

average with ERB/Bark width. Using the spectral power of this modified spec-

trogram (specific loudness), the absolute threshold of hearing can be considered,

and the up- and downwards masking skirts are easily computed in the warped-

spectrum domain, see Fig. 27.
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Figure 27: Using outer-middle-ear weighting and auditory warping, a Bark-band
smoothed version XBark of the spectrogram slice X is found, and the simultane-
ous+absolute masking thresholds XAMT . Unmasked partials are the parts of X ex-
ceeding XAMT .

Monophonic total-power spectrogram and primal signal model. For

partial-tone decompositions in the multi-channel-case, it is necessary to group and

retrieve partials, matching them across the array channels l, in order to obtain a

compact description of the sound. As this is a complex task, a simplified approach

will be preferred here. For the application with binaural signals in [RE08], a ref-

erence channel was selected for each partial according to the channel showing the

larger spectral peak. This allows subsequent monophonic partial tracking. How-

ever, rather than the maximum amplitude channel, the concept of a total radiated

sound is considered here.

Summing up the STFT energy of all microphone signals (weighted sum) yields

a single energy distribution in the time-frequency plane. Let’s call this the total-

power spectrogram

|xtotal[ζ
′, η]|2 =

M∑

l=1

wl |xl[ζ
′, η]|2 . (268)

wl denote the weights for each channel according to its energetic contribution.
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Figure 28: Total-power warped spectrogram with tracking results for a tone of the
bonang barung.

This weight depends on the sphere surface area covered by the lth microphone.

Note that the phase information in xtotal gets lost.

Using the total-power spectrogram |xtotal[ζ
′, η]|2, partial-tracking like in a single-

channel application becomes feasible. The basic approach is given in McAulay [MQ86],

but only quadratic phase modulation can be considered here since phase-information

is unavailable. For sinusoidal components, this yields an estimate of the instan-

taneous magnitude α[η] and frequency ζ̂ ′[η]. Improvements in the frequency lo-

calization of clearly resolved partials2 is achieved by zero-padding and parabolic

interpolation, cf. Smith and Serra [SS92]. Finally, Eq. (266) maps the warped

instantaneous-frequency estimates ζ̂ ′[η] back to a linear frequency-scale ζ̂[η].

The primal signal model ŝ[η] for one partial is determined by magnitude α̂[η]

and instantaneous-frequency candidate ζ̂[η]

ŝ[η] = α̂[η] · eiφ̂[η], (269)

with φ̂[η] = φ̂[η − 1] +
2π

NDFT

ζ̂[η] + ζ̂[η − 1]

2
,

2The 3 frequency bins involved in parabolic interpolation must only contain a single narrow-

band component in order to improve frequency localization.
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using a trapezoidal integration rule for ζ̂ [η]. For sound synthesis, the real part of

the complex-exponential, a cosine, is sufficient.

Radiation-pattern retrieval from monophonic model and STFT data.

In order to retrieve the spatial magnitude and phase distribution corresponding to

the monophonic primal signal ŝ[η] of a single partial, the corresponding complex-

valued STFT bins of the multi-channel signals x̂[ζ̂ ′, η] need to be reconsidered.

The discrete-space radiation-pattern ĝ[ζ̂ ′, η] of this partial is computed by nor-

malization of the STFT signals x̂[ζ̂ ′, η] by its complex-valued primal signal ŝ[η]:

ĝ[ζ̂ ′, η] =
x̂[ζ̂ ′, η]

ŝ[η]
. (270)

5.1.5 DSHT and the Centering Problem

In order to benefit from the spherical harmonics description of angular distribu-

tions, the radiation-pattern ĝ[ζ ′, η] can be decomposed using the DSHT methods

presented in chapter 4:

γ̂N[ζ ′, η] = DSHT N {ĝ[ζ ′, η]} . (271)

For the analysis, the spherical harmonics representation furthermore allows plot-

ting of smoothly interpolated radiation patterns. As a refinement, DSHT might

benefit from suitable weights w according Eqs. (239), (241), (242), (247), or

(C)STRIPACK [Bur06, Kei07] in Chap. 4.

Note that the assumption of an angular band-limit N is a prerequisite to DSHT

that might become problematic. For instance, the radiation pattern of a central

point-source is exactly represented at the order N = 0. However, shifting the

source outside the center requires representation with higher orders. Fig. 29 shows

that angular band-limitation requires the point-source to stay near the center for

accurate (D)SHT re-expansion. In particular at high frequencies that require r0

to stay small, this poses a centering problem:

How can we center a musician with her/his instrument so that every source of

sound stays within the given bounds ?

Example: For a surrounding spherical microphone array resolving N = 7, the

shift of a point-source must be r0/λ < 1.53. At a frequency of 3430Hz (λ = 10cm),

the point-source must lie within r0 < 15.3cm to be fully represented3. Conse-

quently, assuming perfect angular band-limitation implies that the representation

3This does not mean that any superposition of multiple point-sources inside r0 can be ac-

curately resolved. In general, combinations of shifted point-sources, i.e. multipoles, cf. [Wil99],

may yield even higher orders.
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Figure 29: Centering problem: angular band-limitation may cause representation er-
rors. The field of an non-centered point-source at r0 θ0 band-limited to n ≤ N exhibits
a representation error that depends on the amount of shift r0/λ in wave lengths, the
relative radius of observation r/r0, and the angular band-limit N. The contours in the
figure indicate the shift r0/λ, at which the error exceeds a −3dB limit.

of point-sources at r0 > 15.3cm is lacking parts of its actually radiated sound-

power. Therefore, nonuniform aliasing might be unacceptable as the direction of

the center shift affects the representation. Conversely, uniform aliasing can yield

fair approximations under far-field conditions if statistically diffuse radiation is

considered.

5.1.6 Examples: Sound-Radiation Analysis Results

gong ageng. 4 The sound-radiation of the gong ageng has been captured using

the setup depicted in Fig. 30(a) having a radius r = 1.3m, and the directivity

pattern has been assumed to be rotational symmetric. As given in Chap. 4 on

discrete spherical harmonics transforms, the spherical harmonics matrix YN may

only contain harmonics withm = 0. For a suitable DSHT, a weighted least-squares

approach is employed, which uses the weights associated with surface fractions of

the sphere, sampled by the microphones, Eq. (247).

The gong can be assumed to produce a dipole-like directivity at its funda-

mental mode at f = 43Hz. From the knowledge about gongs in Varsányi [Var00]

and Fleischer [Fle01, Fle02b, Fle02a, Fle03], gongs from Java and Bali have been

observed to exhibit beating of two closely spaced frequencies around the octave

harmonic. Fig- 30(b) shows the total-power spectrogram and its partials as well as

two radiation patterns associated with f0 and f1 progressing over time, Figs. 30(c)

30(d). The measurement can be easily extrapolated holographically to larger

radii, which is illustrated in Figs. 31(a) 31(b).

4The term gong ageng denotes the big gong in central Javan Gamelan orchestras.
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(a) r = 1.3m 10 ch. half-circular array, right: gong ageng

(b) gong ageng total-power spectrogram

(c) f0 = 43Hz radiation pattern at 2.40s, 2.48s, and 2.76s.

(d) f1 = 88Hz radiation pattern of the beating first harmonic at 2.40s, 2.48s, and 2.76s.

Figure 30: Radiation capture of gongs, and analysis of the gong ageng.
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(a) f0 pattern extrapolated to r = 10m

(b) f1 pattern extrapolated to r = 10m

Figure 31: Acoustic holography with the gong ageng patterns.
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bonang barung. 5 Recalling Chap. 4 on discrete spherical harmonics trans-

forms, we may choose the matrix YN to contain only even harmonics wrt. z = 0

because this instrument is played on a solid, reflecting floor. DSHT is again using

weighted least-squares and suitable weights cf. Eq. (247).

Fig. 32(b) shows the total-power spectrogram of a bonang barung sound with

its partials as well as three radiation patterns Figs. 32(c) associated with these

partials at one time-instant. An interesting question, in terms of accuracy in the

microphone positions, centering, etc. is: Would the absolute values detected at

the microphones work as radiation pattern as well? Figs. 32(d) shows the hereby

obtained radiation patterns. Note that these patterns cannot exhibit sharp notches

as there may be no zero-crossings. Unless captured in the far-field, extrapolation

of sound-radiation will become erroneous. This is because the absolute value of a

radiation pattern non-linearly generates and mixes spherical harmonics of different

orders, which radiate differently beyond the far-field. Usually this must be taken

into account at low frequencies.

5The term bonang barung, see Fig. 3, denotes an instrument consisting of a collection of

horizontally mounted small gongs (bonang) covering the middle tonal range (barung) in the

central Javan Gamelan music.
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(a) r = 1.3m 26 ch. hemispherical array (3 rings); the instrument in the picture differs

(b) bonang barung 3rd tone: total-power spectrogram

(c) Radiation of f = {365, 548, 1214}Hz at 1.2s

(d) Encoded absolute values of radiation pattern.

Figure 32: Radiation capture of balungan instruments, and analysis of the bonang

barung. The radiation patterns encoded from the absolute values are depicted for com-
parison.
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Saxophone, ITA-Aachen. For this analysis, recordings from the Institute of

Technical Acoustics in Aachen (ITA) have been used [Pol07, Reu08, SRBA08]. It

has been found insightful to regard radiation patterns at matching frequencies but

different notes within a complete melody. The radiation patterns can be reported

to be stationary during the tones, but may differ for different notes (instrument

configuration Chap. 1).

Fig. 33(a) shows the auditory-scale warped total-power spectrogram of the

melody and the markers for the radiation patterns compared in Figs. 33(b) 33(c)

33(d). The radiation patterns of the first harmonic of one note and the fundamen-

tal frequency of its octave note seems to match well Fig. 33(b). On the other hand,

the matching frequencies associated with matching partials of two other musical

intervals do not seem to yield the same directivity patterns for the saxophone

Figs. 33(c) 33(d).

Comparisons of this kind become easier using surrounding spherical micro-

phone arrays and provide a new step forward in the understanding the musical

acoustics of instruments. For instance, it can be expected that brass instruments

exhibit frequency dependent directivity patterns that are invariant for different

notes. Whereas the directivity of woodwind and many other instruments will

probably depend on the note. The perceptual implications of these differences

could be investigated to reduce the effort of computational directivity-models.
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(a) Total-power spectrogram of a saxophone melody recorded with the r = 2.2m array Fig. 24(a)
at ITA, Aachen [Reu08], played by Sönke Pelzer.

(b) f = 463Hz as f1@0.24s and f0@1.6s (octave)

(c) f = 692Hz as f2@0.24s and f1@1.12s (fifth)

(d) f = 930Hz as f3@0.24s and f2@0.68s (fourth)

Figure 33: Radiation of the partials of a saxophone (ITA-Aachen).
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5.1.7 Outlook on Adaptive Sound-Radiation Identification

The following paragraphs show adaptive identification methods for the SIMO

radiation-model as an attractive alternative to the spectral model. Given a multi-

channel sound-radiation signal χN(ω)|r=R the question is: What is the primal

signal s(ω), and the radiation pattern γN(ω)?

χN[η]

...

Blind SIMO

Identification
+ MINT

s[η]

γN[η]

⋆

γN[η]

χN[η]s[η]

Figure 34: SIMO sound-radiation with source-filter problem. The first stage extracts
a primal signal s[η] that reconstructs the sound-radiation χN[η] best using the radiation

impulse response γN[η], i.e. χN[η]
!
= s[η] ⋆ γN[η].

Non-blind identification. In order to identify the SIMO impulse responses

γN[η], it is desirable to know the primal signal s[η]. Using s[η] as a reference

signal, the responses γN[η] could be determined from χN[η] by adaptive filters

(beamforming, LMS, [Hay02]). However, s[η] is usually not accessible. Instead,

other reference signals needs to be found.

For incident fields, the zero-order harmonic is likely to contain all the spectral

information of sound incident from a single source6 without co-channel interference

(CCI, [HCB06]). Hence Hellerud et al. [HSS09, HS09] are able to successfully

select the zero-order channel out of their compact spherical microphone array as

a suitable reference, from which all irradiation responses are identified. However,

this might not be feasible for sound-radiation, and even worse: it could turn out

to be an ill-posed choice7.

Blind channel identification. The spectrum of the primal signal s[η] could

be identified by averaging power spectra/autocorrelations across the channels of

6The advanced reader recognizes this by observing the complex-valued non-zero radial func-

tions in the incident part of translated multipole fields in Eq. (166), Chap. 3
7Conversely, the zeroes of the real-valued radial functions in the radiating part of translated

multipole fields may cancel components of the measured signal, cf. Eq. (166), Chap. 3.
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the radiation signal. However in doing so, all phase information of the primal

signal gets lost. Direct summation of all channels is not an option since temporal

interference (TI) might destroy parts of the signal.

In order to reconstruct a primal signal with neither temporal interference nor

losing phase relations, it could be preferable to perform blind channel identifi-

cation (BCI) of the SIMO response first, cf. [HBC05, HCB06]. According to

literature, BCI can be solved by, e.g., the multi-channel least-mean-square algo-

rithm (MCLMS), which identifies the radiation impulse responses γN[η] of the

given problem. Subsequent to BCI, the application of the multiple-input/output

inverse theorem (MINT, pseudo-inverse, see [HCB06]) estimates the primal signal

s[η].

This task has neither been implemented nor tested within this thesis and is

subject to future work. It has to be remarked, though, that the SIMO identifica-

tion relies on a fully excited signal spectrum of s[n], which must be reflected in the

SIMO channels. This is referred to as Multichannel Diversity and the Common-

Zero Problem in Sec. 2.7.7 of the book [HCB06]. However, musical instruments

will frequently cause violation of these requirements since the spectra of musical

sounds tend to be spectrally sparse. The SIMO BCI algorithm will yield ambigu-

ous channel responses due to the parts of near-zero spectral energy. Pre-whitening

should only be employed with care as spectrally weak parts should not be over-

emphasized, potentially causing further degradation of the BCI.
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5.1.8 Future Research: Fully Parametric Directivity, Position, and
Orientation Tracking of Partials

The most interesting goal that can be imagined as a result of future research, is

the decomposition of the sound-radiation of partials into even more parameters:

• time-frequency-amplitude track of the partial

• x-y-z-position track of its origin of radiation

• α-β-γ rotational orientation track of its directivity pattern

• γN track of its directivity pattern

However, a suitable algorithm for identification of shifted sources, which circum-

vents the centering problem (Sec. 5.1.5), has not been discovered yet. Furthermore,

a way of parametrization must be found for stochastic residual signals. Using this

parametrization, for example the movements of the directivity patterns, their ac-

tual order, position, etc. can be manipulated. These manipulations might offer not

only artistic means of expression, but may also reduce the complexity of playback;

assuming position and orientation reduces the information stored in the directivity

track γN (order and change rate).
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Chapter VI

SYNTHESIS OF SOUND-RADIATION USING

COMPACT SPHERICAL LOUDSPEAKER

ARRAYS

In the light of the many publications on compact spherical loudspeaker arrays,

it is interesting that many important questions remain unanswered in the early

works. For example, it is yet unclear whether a common interior air volume is

the better choice for a low-frequency array than an individually isolated interior.

Furthermore, the high dynamic range of operation needs some research. If we

assume that these devices play back spherical patterns at a certain radius rp, the

questions are:

• What range of target sound pressure levels can be covered?

• Which range of radii rp can be used?

• What is the upper cutoff frequency for spatial aliasing?

• How does the dynamic range of the digital output affect level and radial

ranges and the average/peak currents through the loudspeaker coils?

• What is the resulting frequency range?

Before these questions are answered, a comprehensive analysis of compact

spherical loudspeaker arrays is required. Therefore, the first half of this chap-

ter studies all representations and computational models presented in [ZSH07,

ZH07, ZN07, ZSN08, ZPS08, Pom08] for this type of arrays. This is structured as

follows: Introduction of radiation synthesis with compact spherical loudspeaker

arrays, system descriptions and angular radiation control based on microphone

array measurements, laser vibrometry measurements with cap model, a complete

electroacoustic model, synthesis errors and angular aliasing, more efficient control

systems, and radial beam steering. Finally, the chapter elaborates on some of the

above questions giving an analysis of the influence of the enclosure, yielding the

feasible ranges for level, radius, and spherical order.
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6.1 Introduction of Synthesis

of Sound-Radiation

In 1997, Gabriel Weinreich filed a patent [Wei97] about a Directional Tone Color

loudspeaker, Fig. 35. This new device attempts to reproduce the radiation pattern

of a violin by creating interferences of the sound in space. His loudspeaker creates

these interferences by playing the sound through pipes bent about to have different

path lengths.

Figure 35: Gabriel Weinreich’s Directional Tone Color Loudspeaker that simulates
sound-radiation of the violin, Curtin [Cur00].

A few years later, pioneering works on compact spherical loudspeaker arrays

for re-synthesis of directivity patterns have been published.

6.1.1 Compact Spherical Loudspeaker Arrays

Compact spherical arrays are particularly suited for acoustic radiation synthesis in

real or virtual reality environments. The spherical arrays in the scope of this thesis

basically consist of a rigid spherical body or Platonic solid, into which individually

driven loudspeakers are mounted.

Omnidirectional compact spherical loudspeaker arrays. Nowadays, this

kind of solid compact spherical loudspeaker arrays is mostly used as powerful

omnidirectional sound source in room acoustics measurements. An important

model analysis using a group theoretical approach has been published by Viggo

Tarnow [Tar74], comparing the performance of loudspeaker arrays arranged in

the shape of Platonic solids. An interesting lumped-element simulation of the

impedances of such loudspeakers is found in the AkAbak Manual, Panzer [PC97].
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Another application for omnidirectional Platonic loudspeaker arrays has been

found by Yoshihide Hayakawa, Takanori Nishino, and Kazuya Takeda for near-

field HTRF measurements [HNT07]. The work of Wieland Weise [Wei04] analyzes

the performance of hemispherical loudspeaker arrays with both a spherical har-

monics approach (in accordance with [Tar74]) and the boundary element method.

A very detailed survey on the omnidirectional characteristics of a huge variety of

custom-built Platonic-solid loudspeaker arrays has been carried out by Timothy

Leishman, Sarah Rollins, and Heather Smith [LRS06]. Gottfried Behler improved

the design of a dodecahedral omni-source by extending the compact spherical

loudspeaker array to a 3-way system [Beh00]. Ingo Witew, Behler, and Michael

Vorländer pointed out the significant dependency of room acoustics quality mea-

sures above 1kHz on the directivity of the measurement source [WBV05].

Compact spherical loudspeaker arrays for radiation synthesis. Recently,

there have been several publications by the IRCAM research-group, describing

the control of radiation patterns given specific array implementations. After

the first studies of René Caussé, J.F. Bresciani, and Olivier Warusfel [CBW92],

the first theoretical approach was established by Warusfel, Philippe Derogis, and

Caussé [WDC97]. Several practical works from Nicolas Misdariis, Warusfel, Caussé,

and François Nicolas followed [MNWC01, WM01, MNWC01, MWC01, MOWN02,

WM04].

In the meantime at Princeton, Perry Cook, Georg Essl, George Tzanetakis,

and Dan Trueman [CETT98] were researching into this new field, targeting an

application in their music performances, followed by practical works of Trueman

and Cook [TC99, CT99], later also with Curtis Bahn [TBC00], and finally the

Princeton Laptop Orchestra (PLOrk) [TCSW06] with also Scott Smallwood and

Ge Wang.

Furthermore, the people at CNMAT, Berkeley, launched their research with

solid compact spherical loudspeaker arrays with Justin Baird, John and Perrin

Meyer, Peter Kassakian, and David Wessel [BMM+01]. Several interesting works

on the optimization of directivity pattern filters, and the characterization of com-

pact spherical loudspeaker arrays in terms of their spherical harmonics error range

from Kassakian and Wessel followed [KW03, KW04].

The Orbophone, a translucent dodecahedral loudspeaker array, was presented

by Damien Lock, Greg Schiemer, and Lulu Ong from the University of Wollon-

gong, as a new device for artistic multimedia performances with audio and light

[LSO06, LS06]; note the excellent review on the history of directivity control from

a computer music perspective in their papers.

In Brescia, P. G. Beretta, G. Petersini, and E. Piana at the Dipartimento di
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Ingegneria Meccanica designed a commercial, well-shaped spherical-surface dodec-

ahedral array [BPP04]; their study also shows the intent towards an extension to

a variable directivity loudspeaker.

Presently, Gottfried Behler’s research activity in this field has been finding its

way into several publications from the ITA in Aachen, [Beh06b, Beh06a, Beh07a,

Beh07b] for the application as an auralization tool for concert halls, consider-

ing the source directivity of the auralized sound. Furthermore, Martin Pollow’s

master’s thesis [Pol07] at the ITA is an excellent work on the control of a do-

decahedral loudspeaker given magnitude directivity data of musical instruments.

Some practical work from CNMAT on a solid highly integrated and powerful 120-

element tweeter-array was published by Rimas Avizienis, Adrian Freed, Kassakian

and Wessel [AFKW06]; which I had the lucky opportunity to work with in the

preparation for this thesis. Additionally, low-cost experiments were presented by

Michael Zbyszyński on the web [Zby07] and by Peter Lucas Hulen [Hul08]. On

the other hand, some research has been published by the IEM research-group

in Graz, considering analytical models of the spherical speaker systems, show-

ing their limitations in spatial resolution, a model for crosstalk, and a framework

for directivity control [ZS06, ZS07, ZSH07, ZH07, ZN07, Pom08, ZSN08, ZPS08].

Explicit computations of electrical voltages for different (baffled/common) enclo-

sure designs and dealing with an approach for magnitude synthesis have been

published by Alexander Mattioli Pasqual, José Roberto Arruda and Philippe Her-

zog [PAH08b, PAH08a] at Laboratório de Vibroacústica Universidade Estadual

de Campinas and LMA-CNRS Marseille. In a newer paper [PAH09], there is an

interesting consideration on a modal space with all the degrees of freedom, the

acoustic radiation modes.

Further questions about the interactive exploration of the perception of direc-

tivity patterns have been raised in the papers [FSZ08, Sch09] by Adrian Freed and

Andy Schmeder. It turns out that they circumvent the conceptual problems we

have with the perception of beams by using interactive interfaces, enabling playful

learning of this rather new perceptual quality.

Examples and questions. Fig. 36 gives some examples of compact spherical

loudspeaker arrays. Even if this is a narrow selection only, all these loudspeaker

systems give rise to several common questions. Given the hardware of a compact

spherical loudspeaker array:

• What will be the radiation pattern if I feed one loudspeaker?

• What is the interaction between the speakers?

114



• How can I determine an over-all characterization by measurement?

(a) CNMAT spherical loudspeakers, Berkeley

(b) IEM spherical loud-
speakers, Graz

(c) ITA spherical loud-
speakers, Aachen (photo:
ITA, Behler)

Figure 36: Compact spherical loudspeaker arrays.

In its first half, this chapter tries to give answers to these questions.
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6.2 System Description Based on Microphone

Array Measurements

Figure 37: Measurement setup for compact spherical loudspeaker system identification
with microphones. An electric turntable facilitates sampling the complete spherical grid
depicted on the right [Pom08].

Using an array of microphones located at a certain concentric sphere surround-

ing the spherical loudspeaker, we are able to determine all transducer directivities,

i.e. transfer functions between loudspeakers and microphones, see Fig. 37. How

to design a control system based on the measurement data has been presented

in [Pom08, ZSN08, ZPS08] as an efficient means of directivity control and will be

explained in the following paragraphs.

Output pressure directivity pattern (MIMO). The multiple-input-multiple-

output device under test (MIMO, Fig. 38(a)) is described as

p = Gu. (272)

The matrix G linearly combines the vector of L loudspeaker input voltages u

to form the sound pressure directivity pattern p measured with M microphones,

see Fig. 38(a). Note that the dependency on the frequency variable ω has been

omitted for better readability, but in this simple form the relation holds for the

frequency domain only.

A control system (MIMO-ctl, Fig. 38(b)) optimizing for the desired angular

directivity pattern p ≈ pctl using the least-squares inverse G+

p = GG+ pctl
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Figure 38: Block-diagrams of MIMO measurement and control of compact spherical
loudspeaker arrays. Boxes with -45◦-hatching (green) correspond to control blocks.

doesn’t seem practical. It yields large approximation errors with unknown spatial

error distribution. In the following sections the real-valued spherical harmonics

(SH) will be used as base set of angular directivity patterns. They also enable

radial beamforming as described in [ZN07] and Sec. 6.7.

The concept of an angular band limit seems to be appropriate for directivity

control to ensure a rotation invariant bounded resolution within the entire angu-

lar space. Spherical harmonics expansions truncated at some order N inherently

support this concept, see Sec. 3.3.2.

Spherical harmonics output directivity (MIMO-LSH). 1 A decomposition

of the output directivity pattern p into SH can be accomplished using discrete

spherical harmonics transform (DSHT). We use a weighted least-squares transform

1For abbreviation, the MIMO-system in Eq. (272) transformed into spherical harmonics from

different sides are denoted as:

MIMO-LSH . . . system transformed to SH from the left, at the system output,

MIMO-RSH . . . system transformed to SH from the right, at the system input,

MIMO-SH . . . system entirely transformed to SH, from the left and the right. .
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according Eq. (245), the microphone angles {θl}, and YN = mtxN {Y m
n (θl)}. The

DSHT yields the coefficients ψN

ψN =
(
Y T

N

)+w
p, (273)

using the weight vector w similar to those given in Sneeuw [Sne94]. With theo-

retically infinitely many array microphones, the system without truncation N ≤√
M − 1 → ∞ yields the coefficients ψN of the spherical wave spectrum of the

sound pressure, cf. Sec. 2.3.1. By the above equation, the system Eq. (272) is

transformed from the left hand side (MIMO-LSH, Fig. 39(a)) into

ψN =
(
Y T

N

)+w
G u (274)

= G
c

N u.

Spherical harmonics input directivity (MIMO-RSH). 1 On the other

hand, the angularly distributed loudspeaker array voltage signals may also be rep-

resented by SH, i.e. described as a SH-coefficient vector ΥNc . This representation

is obtained by an SH-encoder (compare Higher-Order-Ambisonics, HOA, [Dan01,

ZPF09]) of the order Nc. We write the encoder as a matrix CNc = mtxNc {Y m
n (θl)}

containing the SHs sampled at the array loudspeaker angles {θl}, i.e. ΥNc =

CNc u. For details on the physical meaning of the SH-encoder refer to the

matrix ANc in Sec. 6.3.2, Eqs. (287)(290). Voltage control by the right inverse

u = C+
Nc

Υ̂Nc ensures that Υ̂Nc = ΥNc , hence

u = C+
Nc

ΥNc , (275)

wherein the so-called HOA- or SH-decoderC+
Nc

is right-inverse toCNc , i.e.CNc C
+
Nc

!
=

I. Using this decoder, the original MIMO system Eq. (272) is transformed from

the right hand side (MIMO-RSH, Fig. 39(a)) into

p = G C+
Nc

ΥNc (276)

= G
c

Nc
ΥNc.

Spherical harmonics in- and output directivity (MIMO-SH). 1 Employ-

ing both, the SH-decoder for input voltages and DSHT for the output sound

pressures, the system Eq. (272) becomes (MIMO-SH, Fig. 39(a))

ψN =
(
Y T

N

)+w
G C+

Nc
ΥNc (277)

= G
o

N,Nc
ΥNc.
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(a) MIMO-LSH/RSH/SH
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γ1
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Y T

N
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(b) MIMO-SH-ctl

Figure 39: Block diagrams of spherical harmonics representations (MIMO-
LSH/RSH/SH) of G, and control (MIMO-SH-ctl). +45◦-hatching denote transforms
(red: from right, blue: from left), -45◦-hatching (green) denote control.

6.2.1 Angular Directivity Control

In the paragraphs below, the three main variants of directivity control systems

are presented. Each of the systems accomplishes directivity control by voltages u

that have been derived from the measured MIMO transfer functions G.

• Firstly, direct least-squares inversion of system equation Eq. (272) is used to

obtain the L×M control system MIMO-ctl, Figs. 38(a), 38(b). The approach

yields an approximation quality that strongly depends on angular sampling.

• Secondly, inversion of the Nc-truncated output spherical wave spectrum can

be used to determine an L×(Nc+1)2 control system MIMO-LSH-ctl, compare

Eq. (273) with N = Nc and Fig. 39(a). It has the advantage of being exact
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within the Nc-angularly band-limited representation.

• As a third alternative, the (Nc + 1)2 × (Nc + 1)2 MIMO-SH-ctl system has

been proposed as the favorable variant in [ZSN08, ZPS08], Fig. 39(b). In

this representation, some transfer paths may become irrelevant, see Fig. 50.

These variants are expressed as follows, each providing either p
!
= pctl orψNc

!
= γNc

MIMO-ctl: u = G+ pctl ⇒ p = G G+ pctl ≈ pctl, (278)

MIMO-LSH-ctl: u = G
c

+
Nc
γNc ⇒ ψNc = G

c

Nc
G

c

+
Nc
γNc = γNc, (279)

MIMO-SH-ctl: u = C+
Nc
G̊−1

Nc
γNc ⇒ ψNc = G̊Nc G̊

−1
Nc
γNc = γNc. (280)

Although the dimensions of the frequency dependent parts of MIMO-SH-ctl

are already small Nfft × (Nc + 1)2 × (Nc + 1)2, it becomes clear later in Sec. 6.6

that regular loudspeaker layouts even yield nearly diagonal SISO, i.e. single-input-

single-output, control systems. As the spherical harmonics are eigenfunctions in

the continuous angular space, they approximate the eigenvectors of the discrete

angular space of the array. This is particularly true if the array layout provides

near orthogonal sampling of the SHs. Consequently, the transform nearly diag-

onalizes the MIMO-SH-ctl at all frequencies. The examples in Fig. 50 for the

IEM-icosahedral speaker demonstrate the practical relevance of this relation using

theoretical and measured acoustical/mechanical parameters.
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6.3 System Description Based on a Surface-

Velocity Model and Laser Vibrometry

The loudspeakers within a compact spherical loudspeaker array may interact with

each other via acoustic interior and exterior cross-talk paths. Essentially, it is pos-

sible to directly determine the acoustically coupled output velocities of the discrete

loudspeakers by Laser-Doppler vibrometry measurement [RJ07, JR07]. In princi-

ple, this formulation already allows to compute a system that controls the discrete

loudspeaker velocities independently. Again, a spherical harmonics representation

is desirable in order to get a smooth definition of the angular resolution. Therefore

the cap model, an analytic description of the spherical harmonics surface veloc-

ity patterns for compact spherical loudspeaker arrays is presented in Sec. 6.3.2.

After considering suitable control systems, the corresponding sound-radiation is

modeled.

6.3.1 System Identification by Laser-Doppler Vibrometry.

In order to maintain clarity, this section starts with the description of the practical

measurements and the underlying MIMO-systems and advances to the analytic

model of sound-radiation later on.

Output velocity directivity pattern (MIMO). The MIMO-system iden-

tified by laser-vibrometry describes the transfer functions between the L input

voltages u and the L loudspeaker output velocities v, see Fig. 40

Figure 40: Laser Doppler vibrometry (LDV) measurements on an icosahedral loud-
speaker array.

v = T u. (281)
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Direct control over the membrane velocities v can be obtained using an L × L

control system MIMO-ctl and the steering vector vctl
!
= v, which is written as

v = T T−1 vctl.

Given invertibility of T , this control system is already usable and mostly well-

behaved, but still somewhat expensive to compute. To improve the smoothness

and efficiency, the next section presents a cap model that provides spherical har-

monics coefficients of the surface velocity distribution due to v.

6.3.2 The Spherical Cap Surface Velocity Model

The paper [ZSH07] describes the sphere cap model of a compact spherical loud-

speaker array. It models the surface velocity distribution, which can be identified

selectively by measurements. Essentially, the compact spherical loudspeaker array

is assumed to have spherical geometry and a rigid surface with the radius r0. The

radial surface velocity is assumed to be vr|r0
= 0 everywhere except at the loud-

speakers positions. Within the angular region of the lth loudspeaker it is assumed

to take a constant value vr|r0
= v(l).

The abstract setup is depicted in Fig. 41(a) and 43. References for the le-

gitimacy of such a model to describe real loudspeaker arrays can be found in

Meyer [MM00] and Pollow [Pol07].

v(5)
v = 0

(ϕ5, ϑ5)

(ϕ20, ϑ20)

v(20)

(a) The array model with individ-
ually vibrating spherical caps.

a(l) = 1

a(l) = 0

(b) The aperture of the lth cap is 1
inside a cone with angle α opening
towards (ϕl, ϑl), and 0 elsewhere.

Figure 41: Spherical cap model.

Cap model. The aperture function corresponding to the cap model can be

described as an angular distribution that equals 1 inside, and 0 outside the region
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of a loudspeaker membrane. Specifically, this cap region is enclosed by a cone of

angle α with its apex at the origin r = 0, and its axis of symmetry extending

towards θl, see Fig. 41(b)

a(l) (θ) =







1 at lth loudspeaker,

0 otherwise.
(282)

= 1− u
[

θTθl − cos
(α

2

)]

.

The unit step function u(x) equals 1 for positive x, and 0 otherwise. One part of its

argument x, the scalar product cos(β) = θTθl, describes the angle β between the

unit vectors ‖θ‖ = ‖θl‖ = 1 of the variable spherical angle θ and the loudspeaker

angle θl. It is a necessary physical requirement that the cap functions do not

overlap ∫

S2

a(i) (θ) a(j) (θ) dθ
!
= 0, ∀i 6= j.

Considering Eq. (282), the surface velocity distribution for all the moving caps

may be defined as

v (θ)|ro
=

L∑

l=1

a(l) (θ) v(l). (283)

Note that this equation also characterizes the motionless parts of the surfaces

(v = 0).

In general, the distributions a(l) (θ) on the sphere may be expressed just as well

in terms of their spherical harmonics expansion coefficients a
(l)
nm, cf. Section 2.2.

To facilitate their computation, the properties of the isotropic spherical convolu-

tion (see Sec 3.3.2) are exploited. For that purpose, the Dirac delta distribution

δ
(
1− θT

l θ
)

pointing at the cap center is convolved with a rotationally symmetric

polar cap â (ϑ) to obtain a
(l)
nm

â (ϑ) = 1− u (ϑ− α/2) ,

a(l) (θ) = â(ϑ)
sphconv
⋆ δ(1− θTθl),

=⇒ a(l)
nm = SHT {â (ϑ)}

︸ ︷︷ ︸

ân

SHT
{
δ
(
1− θT

l θ
)}

︸ ︷︷ ︸

Y m
n (θl)

(284)

We calculate ân by utilizing the recurrence of the integrated Legendre polynomials

Pn (x), cf. Williams [Wil99], Meyer [MM00]

ân = SHT {â (ϑ)} =
√

(2n+ 1) π/2

∫ 1

cos(α
2 )
Pn [cos (ϑ)] d(cos (ϑ)) (285)

ân =
√

(2n+ 1)π/2







cos
(

α
2

)
Pn

[
cos
(

α
2

)]
− Pn−1

[
cos
(

α
2

)]
, n > 0

1− cos
(

α
2

)
, n = 0.

.
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Fully expanded, using a truncation number N for the order n ≤ (N + 1)2, with

N→∞, a single cap aperture function reads as

a(l) (θ) =
N∑

n=0

n∑

m=−n

a
(l)
nm

︷ ︸︸ ︷

ân Y
m
n (θl) Y

m
n (θ) . (286)

Matrix notation. Given the cap expansion coefficients a
(l)
nm from Eq. (284), an

(N + 1)2 × L matrix can be built according Eq. (228), Sec. 4.1. This matrix AN

contains the set of L spherical harmonics cap coefficients

AN = mtxN

{
a(l)

nm

}
=
[

a
(1)
N , . . . ,a

(L)
N

]

(287)

= diagN {ân} mtxN {Y m
n (θl)}

︸ ︷︷ ︸

:=CN

= diagN {ân} CN.

Referring to the surface velocity in Eq. (283), we specify a vector v = vec
{
v(l)
}

containing the L cap velocities, in order to compute the superposition of spherical

harmonics cap coefficients as the (N + 1)2 × 1 surface velocity spherical wave

spectrum νN|ro

νN|ro
= vecN{SHT N{v (θ) |ro

}}

=

L∑

l=1

a
(l)
N v(l) = AN









v(1)

v(2)

...

v(L)









= AN v. (288)

Spherical harmonics output directivity (MIMO-LSH). The surface ve-

locity distribution of a compact spherical loudspeaker array has been modeled

in terms of spherical harmonics by using the (N + 1)2 × L cap aperture matrix

AN from Eq. (287). The linear combination of its columns by the actual mem-

brane velocities v yields the surface velocity spherical wave spectrum of the array

Eq.(288). Hence, the MIMO-LSH representation is directly obtained from the dis-

crete velocity pattern of the MIMO system Eq. (281) by left multiplication with

AN

νN|ro
= AN T u (289)

= T
c

N u.

Spherical harmonics in- and output directivity (MIMO-SH). Equiva-

lently to the microphone array-based MIMO-SH system Eq. (277), a decoder A+
Nc

can be applied to define the input voltages u. Hereby the relation between a
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spherical harmonics voltage vector ΥNc
and the spherical wave spectrum of the

velocity is established

νN|ro
= AN T A

+
Nc

ΥNc (290)

= T̊N,Nc ΥNc .

Note that the decoder carries now a physical meaning. Instead of C+
Nc

, which was

used in the previous section, the inverse cap apertures A+
Nc

are employed here. As

a consequence, the input quantity ΥNc is related to the output surface velocity

distribution νN|r0 by T̊N,Nc, which will be derived entirely analytically in Sec. 6.4

based on an electroacoustic model.

6.3.3 Angular Directivity Control

In order to control the angular velocity distribution, i.e. the angular directivity v,

or its angularly band-limited SH representation νNc , by voltages u, the following

control systems provide either v
!
= vctl, or νNc

!
= γNc

MIMO-ctl: u = T+ vctl ⇒ v = T T+ vctl ≈ vctl, (291)

MIMO-LSH-ctl: u = T
c

+
Nc
γNc ⇒ νNc = T

c

Nc
T

c

+
Nc
γNc = γNc, (292)

MIMO-SH-ctl: u = A+
Nc
T̊−1

Nc
γNc ⇒ νNc = T̊Nc T̊

−1
Nc
γNc = γNc. (293)

6.3.4 Sound-Radiation of the Cap Model

According Sec. 2.3 Eqs. (47)-(48), the surface velocity ν|ro
Eq. (288) can be di-

rectly employed into the definition of the spherical exterior Neumann (particle

velocity) boundary value problem. With the spherical Hankel function2 h
(2)
n (kr),

and h
′(2)
n (kr), its derivative, the spherical wave spectrum of the radiated sound

pressure yields

ψm
n (kr) =

ρ0c h
(2)
n (kr)

i h
′(2)
n (kro)

L∑

l=1

a(l)
nm v

(l), (294)

ψN (kr) = diagN

{

ρc h
()
n (kr)

i h
′()
n (kro)

}
L∑

l=1

a
(l)
N v(l)

= diagN

{

ρc h
()
n (kr)

i h
′()
n (kro)

}

AN v, (295)

wherein i =
√
−1, the air density is ρ0 = 1.2, the speed of sound c = 343m/s, the

wave number k = ω/c, and diagN

{
ρc h

()
n (kr)

i h
′()
n (kro)

}

following the definitions in Sec. 4.1.

2h
(2)
n (kr) is used to provide a causal solution to the Fourier expansion eiωt.
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For comparison of the velocity MIMO-system with the sound pressure MIMO-

system described in Sec. 6.2, the following conversions hold3

MIMO-LSH: G
c

N = diagN

{

ρc h
()
n (krp)

i h
′()
n (kro)

}

T
c

N, (296)

MIMO-SH: G̊N,Nc = diagN

{

ρc h
()
n (krp)

i h
′()
n (kro)

}

T̊N,Nc. (297)

It is obvious that the diagonal weighting term diagN

{
ρc h

()
n (krp)

ih
′()
n (kro)

}

that describes

the sound-radiation from the surface velocity is missing in the definitions of T .

Ways of including these transfer functions in a control system are illustrated in

Sec. 6.7 on radial beam steering.

3To be rigorous, the definition of CNc in the MIMO-SH G̊Nc Sec. 6.2 Eq. (280) should be

changed to ANc to match exactly.
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6.4 System Description Based on an

Electroacoustic Model

For a complete electroacoustic model, the sphere cap model was extended to a

spherical shell cap model in [ZH07, ZPS08]. This model incorporates the inter-

action of the caps over the interior and exterior field as well as the electrical and

mechanical transducer characteristics. A block diagram of the spherical shell cap

model is shown in Fig. 42.

i4

u4

u3

u2

u1

i3

i2

i1

v4

v3

v2

v1

f1

f2

f3

f4

z
el
l

{
Rel

l

Lel
l

z
me
l







Rme
l

Sme
l

Mme
l

il = fl/βl

ul = βlvl

β1

β2

β3

β4

u, i f ,vzel B zme Zac

Figure 42: For the lth array loudspeaker, the electroacoustic model consists of an
electrical amplifier voltage ul and current il, an electrical resistance and inductance
Rel

l , Lel
l of the loudspeaker coil, the electro-dynamical transduction constant βl that

relates electric quantities to mechanical forces and velocities fl, vl, as well as the me-
chanical impedance zme

l at each membrane. The membranes are acoustically loaded by
the impedance Zac that mutually couples the loudspeakers, in general.

Shell model / modeling the acoustic impedance Zac. A model considering

the acoustic impedance needs to describe the acoustic crosstalk between the array

transducers via the interior and exterior sound field. Therefore, the spherical cap

model from Fig. 41(a) is re-drawn as a spherical shell having a finite thickness

between the interior and exterior surface radii ri, and ro, see Fig. 43.

The spherical wave spectrum of the sound pressure in both fields, the interior

and exterior, is given similarly to Eq. (295) in terms of a mixed Neumann boundary

problem (II), see Sec. 2.3

ψN (kr) =







diagN

{
ρc h

()
n (kr)

ih
′()
n (kro)

}

AN v, for r ≥ ro

diagN

{
ρci jn(kir)
i j′n(kiri)

}

AN v, for r ≤ ri.
(298)
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(a) Hollow spherical shell with vi-
brating caps.

(b) The caps mutually
interact over the sound
field.

p > 0p < 0

v
(l)

f
(l,ext)

f
(l,int)

f
(l,me)

ri

ro

(c) Acoustical and mechanical
forces on a spherical cap in ra-
dial direction.

Figure 43: Hollow spherical cap model for interaction modeling.

Here, we choose a different notation ci and ki to account for the propagation

properties of the enclosure medium. For an interior filled with damping wool

these are ci = 0.93 c and ki = k/0.93.

Assuming a static model, in which every cap is motionless, i.e. v(l) = 0, ∀l =

1, . . . ,L, the computation of the impact forces due to both sound fields becomes

feasible. First of all, the explicit sound pressure distributions on either side of

the spherical shell are required, i.e. p (θ) |ro
on the exterior, and p (θ) |ri

on the

interior side. Integrating both sound pressures over the aperture a(l) (θ) of the lth

motionless cap yields the induced radial force f (l), cf. Fig. 43(c):

f (l) =

∫

S2

a(l) (θ)
[
p (θ)|ro

+ p (θ)|ri

]
dθ. (299)

These pressures are equivalent to the spherical wave spectra from Eq. (298) in the

spherical harmonics domain evaluated at ro and ri

ψm
n |ro

= SHT
{
p (θ)|ro

}
, and ψm

n |ri
= SHT

{
p (θ)|ri

}
. (300)

The integral Eq. (299) reduces to a sum after insertion of both factors, the aper-

tures a(l)(θ) Eq. (284), and the pressures p(θ)|ro
, p(θ)|ri

, in their spherical har-

monics expansions. Due to the orthonormality Eq. (27) of the normalized spherical
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harmonics, this yields

f (l) =

∫

S2

[ ∞∑

n′=0

n′

∑

m′=−n′

a
(l)
n′m′Y

m′

n′ (θ)

] [ ∞∑

n=0

n∑

m=−n

(
ψm

n |ro
+ ψm

n |ri

)
Y m

n (θ)

]

dθ,

=
∞∑

n′=0

n′

∑

m′=−n′

∞∑

n=0

n∑

m=−n

a
(l)
n′m′

(
ψm

n |ro
+ ψm

n |ri

)
∫

S2

Y m
n (θ) Y m′

n′ (θ) dθ

︸ ︷︷ ︸

=δ[n−n′]δ[m−m′]

f (l) =
∞∑

n=0

n∑

m=−n

a(l)
nm

(
ψm

n |ro
+ ψm

n |ri

)
. (301)

In matrix notation of a
(l)
nm and vector notation of ψm

n |ro
and ψm

n |ri
, the L impact

forces remain (ideally N→∞)

f ac =









f (1)

f (2)

...

f (L)









= AT
N

(
ψN|ro

+ ψN|ri

)
. (302)

For a linear model, we assume that the principle of linear superposition holds.

Therefore, the spherical wave spectra of the actually vibrating caps Eq. (298) may

be plugged into Eq. (302) for motionless caps to obtain the impact forces obtained

due to the sound fields. The equation for the acoustical forces f ac and the resulting

acoustic impedance, the acoustic load, are:

f ac =
ρ0c

i
AT

N diagN

{(

ci
c

jn (kiri)

j′n (kiri)
+
h

()
n (kro)

h
′()
n (kro)

)}

A v, (303)

= Zac v.

Mechanical impedance Zme. In addition to the acoustic load on the caps,

specific radial mechanical forces fme are required to induce the velocities v of

the spherical caps. Proportionality is represented by the mechanical impedances

Zme = diag {zme} of the membranes:

fme = Zme v. (304)

Note that these individually independent impedances are determined by the mass

Mme
l , the stiffness Sme

l , and the friction Rme
l of the loudspeaker membranes, which

are serially connected

zme = iωMme
l + Sme

l /(iω) +Rme
l . (305)

For specific values, data sheets or impedance measurements with the delta mass

method (cf. Dickason [Dic01]) can be used.
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v1

Zme Zac

v2

v3

v4

f1
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f3

f4

Z = Zme +Zac

Figure 44: Mechano-acoustic crosstalk system.

The inhomogeneous equation of motion with the excitation force vector f

becomes in sum f = f ac + fme = (Zme +Zac) v. Inserting the acoustical and

mechanical forces (Eq. (303) and Eq. (304)), this yields:

f =

[

iρ0c A
T diagN

{(

ci
c

jn (kiri)

j′n (kiri)
+
h

()
n (kro)

h
′()
n (kro)

)}

A+Zme

]

︸ ︷︷ ︸

Z

v,

f = Z v. (306)

The new expression Z represents the impedance matrix (Fig. 44) for the acoustical

and mechanical properties of the array.

Transduction and electrical impedance. Normally, electrical amplifiers and

electro-dynamical transducers are used to control the mechanical loudspeaker ve-

locities and forces. This transduction involves a gyrator that converts an input

voltage u to an output force f and an input current i to an output velocities v by

the transduction constant β. The electro-dynamical transducer model is depicted

in Fig. 45.

β

Transduction

f

vi

u

zel

i

R
el Lel

Figure 45: Electrical amplification, transmission, and transduction model of an electro-
dynamical loudspeaker.

For each transducer, the equation

zel = Rel + Lel/(iω) (307)
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holds. The equation uses the electrical resistance Rel and inductance Lel. The

electrical quantity Rel is modeling the resistance of the amplifier, the cable, as

well as the transducer coil in sum. A transducer constant βl, a coil resistance, and

an inductance Ll have to be obtained from measurements or the transducer data

sheet. For all loudspeakers, this part of the system is described by the diagonal

(uncoupled) matrices Rel = diag
{
Rel

l

}
, Lel = diag

{
Lel

l

}
, βel = diag

{
βel

l

}
, and

Zel = Rel + 1
iω
Lel

i = B−1 f , (308)

u = Zel i+B v, (309)

=⇒ u = Zel B−1 f +B v. (310)

The voltages u in the second line are the sum of the gyrator voltages B v and

voltages due to the electrical impedances Zeli.

Fully analytic spherical shell cap-model. Completing the description from

Eqs. (306),(310) we obtain for the compact spherical loudspeaker model

v =
(
Zel B−1 Z +B

)−1

︸ ︷︷ ︸

:=T

u, (311)

with T defined as in Sec. 6.3.1 (about laser vibrometry), Eq. (281). Considering

the equations for output and input spherical harmonics representations Eqs. (289),

(290), the shell model for T yields MIMO, MIMO-LSH, and MIMO-SH systems:

MIMO: T =
(
Zel B−1 Z +B

)−1
, (312)

MIMO-LSH: T
c

N = AN T , (313)

MIMO-SH: T
o

N,Nc
= AN T A

+
Nc
. (314)

Comparison, conversion, angular directivity control. The above defined

system T directly compares to the laser vibrometry MIMO system. Hence, also

the conversions in Eqs. (296), (297) hold if a comparison with the microphone

array measurements of the MIMO-LSH and MIMO-SH systems is desirable.

The control systems MIMO-ctl (T−1), MIMO-LSH-ctl (G
c

+
Nc

, T
c

+
Nc

) and MIMO-

SH (G̊−1
Nc

, T̊−1
Nc

) are found by truncation with Nc and least-squares inversion in

every frequency, as in Eqs. (279), (280), (291), (292), (293).

131



6.5 Synthesis Error Evaluation and

Angular Aliasing

To evaluate the synthesis performance, spatial aliasing has to be considered, i.e.

all spherical harmonics N → ∞ need to be taken into account. An ideal control

system equals the identity matrix for n ≤ Nc, and zero for n > Nc. The system

error e (γNc) = E γNc depends on the steering vector and is defined as deviation

from this idealized behavior

E =

[

G
o

Nc

G
o

>Nc,Nc

]

G
o −1
Nc
−
[

INc

0>Nc,Nc

]

=

[

0Nc

G
o

>Nc,Nc
G

o −1
Nc

]

. (315)

Following a similar approach as in [KW04], the minimum and maximum power of

the error result from an eigendecomposition of the squared error, see also [Pom08]

‖e (γNc)‖2 = γH
Nc
EHE γNc , (316)

EHE = Q diag {σe}2 QH,

⇒ argmin{σe}2 ≤
‖e (γNc)‖2

‖γNc‖2
≤ argmax{σe}2,

wherein ()H denotes Hermitian transposition. As all eigenvectors inQ are normal-

ized, the magnitude of the squared error is determined by the eigenvalues only. The

following sections apply the hereby defined error bounds and an average ‖σe‖2

(Nc+1)2

to characterize the system performance.

As σ2
e,q are the variances of the individual spectral components of the error

system EHE, and Q is an orthonormal system, the minimum and maximum

eigenvalues, σ2
e,min and σ2

e,max, describe the normalized error variances associated

with the two eigenvectors, γbest and γworst. These eigenvectors represent the most

and least accurate re-synthesis patterns on the given arrangement. Again, a −3dB

border is suitable to illustrate the tendencies. An example is given in Fig. 46(a).

In [ZSH07], the transition of the total squared-error surface over the −3dB border

is depicted for a few examples of spherical array layouts, in dependency of different

array diameter φo = 2ro, and the ratio between the target synthesis radius rp and

the array radius ro. The contours in Fig. 46(a) are less restrictive. A simulation

with decreased cap sizes in Fig. 46(b) exhibits that the cap size has only a small

influence on the accuracy.

Further interesting insights can be obtained for a spherical array when looking

at the spherical harmonics magnitudes of the eigenvectors in Q, compared to the

corresponding eigenvalue σ2
e,q, see Fig. 47.
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Figure 46: Error analysis of Platonically sampled spherical arrays with cap size α,
proportional to the maximum non-overlapping size αmax; the array diameter φo = 2ro is
normalized to the wavelength λ in the above diagram. The lines are the −3dB contours
of the average (black/gray), minimum- (blue), and maximum- (red) square synthesis
errors. A rough rule of thumb for array-design can be given according the average
errors: φo < λ, and rp > 2ro.
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Figure 47: The eigendecomposition of the system error matrix reveals, which eigen-
vectors ψq (left bottom) of the error are associated with which error magnitudes σ2

e,q

(left top). In the given example (icosahedral array α = αmax(icosahedron)/2), the
n = 3,m = {−2, 0, +2} harmonics seem to worst performing, as well as special combi-
nations of 3rd order harmonics (column 14-16). Note that this analysis is dependent on
the distance rp/r0.
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6.6 Comparison of Models and Hardware Im-

plementation, Reduction of Control Filters

The IEM icosahedral array has a radius of ro = 0.28m and its 20 loudspeakers

are built into an icosahedron with a common interior, loosely filled with damping

wool. This hardware and its parameters shall be used as a reference in the fol-

lowing paragraphs, in order to compare the measured responses with the models

introduced in the previous two sections.

Furthermore, this section introduces a way of analyzing the minimum, average,

and maximum reproduction errors.

It is also shown, how the MIMO-SH approach makes the control more efficient

by discarding low-energy filters in the system matrix.

6.6.1 Microphone Array Measurements.

The measurement setup is depicted in Fig. 37 and uses a 10◦-spaced semicircular

microphone array with 5◦ offset from ϑ = 0. The transfer functions in G were

measured in 10◦ azimuthal steps using an electric turntable. With the quadra-

ture or surface fraction weights w (cf. [SB96], [Pom08]) for weighted least-squares

inversion, the transfer functions were transformed from the left into G
c

17.

p(t, θ1)|rau1(t)

u2(t)

u3(t)

uL(t)

γ1(t)

γ2(t)

C+
Nc

γNc(t) G
o −1

Nc
(ω) G(ω)

eq1 (ω)

eq2 (ω)

eq3 (ω)

eqL (ω)γ(Nc+1)2(t)

Eq(ω)

G(ω)C+
Nc

Υ1(t)

Υ2(t)

G
o −1

Nc
(ω)

Υ(Nc+1)2(t)

p(t, θ2)|ra

p(t, θ3)|ra

p(t, θ4)|ra

p(t, θ5)|ra

p(t, θM)|ra

p(t)

Figure 48: Angular compact spherical loudspeaker beamformer.

From G
c

17, the MIMO-LSH-ctl G
c

+
3 and MIMO-SH-ctl G

o −1
3 were computed

according the descriptions given above. In addition, analytic versions of the control

systems were calculated from the model in the previous sections.
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The frequency responses in magnitude of G
c

+
3 and G

o −1
3 are depicted in Fig. 49.

The dashed colored lines show the results with the electroacoustic model. The

model indicates that G
o −1
3 exhibits only equalization filters for each order n, and

two additional crosstalk cancellation filters between the orders 10↔ 11 and 15↔
16. Although the frequency responses from the measured data system (thin gray

lines) deviate quite obviously from their analytical counterparts, it is nice to see

that there are more low-energy transfer paths in G
o −1
3 than in G

c

+
3 . Note that

20 filters have been applied to equalize all active on-axis loudspeaker responses

to one reference channel, which seems to be crucial to keep the nearly diagonal

structure. This is easily explained, since the 20 degrees of freedom are reduced to

16 using the spherical harmonics output decoder. Consequently, the variation in

the 20 transducer responses can only be equalized in the 20 loudspeaker feeds, see

Fig. 48.
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Figure 49: Microphone measured MIMO-LSH-ctl and MIMO-SH-ctl magnitude re-
sponses (thin, gray) of the equalized IEM icosahedral array in comparison to the analytic
model responses (dashed, colored).

Frequency slice and frequency response. To illustrate the structures of

MIMO-SH-ctl and MIMO-LSH-ctl control systems, a cross-section through the

frequency-domain filter-matrix is depicted at a frequency of 689Hz. Figs. 50(a)

and 50(b) compare the analytic control systems to the corresponding systems

based on measurements. It is nice to see that in both, theoretical and practical
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results, the MIMO-SH-ctl becomes sparse. However, the reason for the obvious

deviation from the theoretical results is not quite clear yet (non-spherical geometry

of the icosahedron; inhomogeneous filling and cabling in the interior; losses in the

damping wool; slight offsets in the setup).
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Figure 50: Cross-section through the MIMO control systems for the IEM loudspeaker
showing magnitudes at one frequency. The simulated systems are compared to mea-
surement based control, using either microphone array measurements (1st row) or laser-
vibrometry (2nd row). Measured MIMO-SH-ctl systems do not become entirely sparse.
A mask is used to suppress low-energy components (given for mic-array measurement).
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Reduction of control filters. In order to re-establish the sparse structure of

the reduced control system G̊−1
3 that is shown in Fig. 50 for the analytically

modeled MIMO-SH-ctl, a mask needs to be found, omitting irrelevant transfer

paths. Fig. 50(e) shows a selection of 46 important transfer functions. The error

evaluation according to Eq. (316) in Fig. 51 shows a comparison between the

original and “sparsified” MIMO-SH-ctl. Even after a reduction from 256 to 46

transfer functions good results are achievable.

Figure 51: Synthesis errors of the IEM loudspeaker for N=3 comparing the full (top)
and the sparsified (bottom) MIMO-SH-ctl. The pink area and its border mark the
range from minimal to maximal errors at a given frequency, the solid line draws the
mean square error. Results of the analytic model are drawn in dashed lines and gray
behind that as a reference.

6.6.2 Laser-Doppler Vibrometry.

Selective laser vibrometry measurements of the surface velocity on a compact

spherical loudspeaker array were obtained by a much smaller measurement setup

than microphone array measurements, see Fig. 40. This setup is more robust to

acoustic reflections, but the measurements only selectively describe the surface ve-

locity and not the acoustic dispersion. The spherical cap model from the previous

sections is required to model the radiated sound pressure.

Fig. 52 shows the magnitude frequency responses of the 20 × 20 MIMO-ctl

T−1 and the 16×16 MIMO-SH-ctl T̊−1
3 control systems, obtained by laser Doppler

vibrometry measurements (see [RJ07, JR07]), in comparison to the electroacoustic

model. An interesting side aspect: in terms of the 20 × 20 MIMO-ctl system, a
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Figure 52: Laser-vibrometry measured velocity MIMO-ctl and MIMO-SH-ctl mag-
nitude responses (thin, gray) from the IEM-loudspeaker in comparison to analytic re-
sponses (dashed, colored).

grouping of the responses into the 6 angular distance classes on the icosahedron is

obvious. The curves in Fig. 52 can be regarded as to verify the cap model at low

frequencies. Model resonances at higher frequencies appear to be damped in the

LDV measurements. Deviations of the geometry (Platonic solid, speaker cones

and magnets, interior cable harness), as well as losses in the damping wool might

be the reason for this behavior.

Fig. 50 compares a cross-section of the analytic control system according to

the sphere cap model with the laser vibromentry based system. The measured

frequency responses seem to match their analytic counterparts much better than

in the case of microphone array measurements.
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6.7 Radial Steering of Beam-patterns

The above sections have presented control systems in order to control spherical

harmonics beam patterns at a given radius, either as sound particle velocity, or

as sound pressure pattern. These systems that only work for fixed radii ra can be

called angular beamforming.

However, in some situations it is necessary to displace these angular beam

patterns to different radii rp (Fig. 53). This section shows signal processing meth-

ods accomplishing this kind of radial beam-steering or focusing, or briefly radial

beamforming.

ra

rp

p(θ)|krp

p(θ)|kra

(a) Microphone Array based

ra = r0

rp

p(θ)|krp

vr(θ)|kra

(b) Cap model based

Figure 53: There are two basic arrangements for directivity pattern synthesis: In (a)
the sound pressure distribution p(θ)|ra

at the microphone array sphere (red), and (b)
the sound particle velocity distribution vr(θ)|ra

on the cap model speaker array (red)
are synthesized. Despite their different shapes, the radial beamforming filters focus the
beam pattern sharply at a larger sphere specified by the radius rp in both cases.

In particular, this section derives fractions of spherical Hankel filters for accu-

rate radial near- and far-field beamforming with a dependency on the (primary)

synthesis radius ra and the target radius rp, order n, as well as frequency ω.

These filters allow for efficient IIR discrete-time implementations that have been

presented in [Pom08]. Implementations of quite similar filters accomplishing dis-

tance coding filters for Ambisonics have been shown in [Dan03], and in [Mor06] for

compensation of scattered sound fields in rigid sphere microphone array record-

ings.

The spherical wave-spectra of the angularly controlled beam patterns are de-

fined as the spherical harmonics transforms

νm
n |ra

=

∫

S2

vr (θ)|ra
Y m

n (θ) dθ, (317)

or ψm
n |ra

=

∫

S2

p (θ)|ra
Y m

n (θ) dθ. (318)
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Figure 54: Block diagram of spherical beamforming employing radial beamform-
ing/steering. Given angular directivity control according to the beforehand presented
principles (e.g. Fig. 48), a block of specific IIR filters applied to the SH input signals
γm

n (t) achieves radial focusing of the beam pattern to a certain radius rp.

Corresponding on whether a Neumann νm
n |ra

or a Dirichlet ψm
n |ra

boundary value

problem is given, the resulting sound pressure waves propagate accordingly

ψm
n (r) =

ρ0c

i

h
(2)
n (kr)

h
′(2)
n (kra)

νm
n |ra

, (319)

or ψm
n (r) =

h
(2)
n (kr)

h
(2)
n (kra)

ψm
n |ra

, (320)

where k = ω/c is the wave number, i =
√
−1, ρ0 is the density of air, and c the

speed of sound. h
(2)
n (kr) is the spherical Hankel function of the second kind, and

h
′(2)
n (kr) its derivative.

It is worth mentioning, that all parts of the loudspeaker array – the inhomo-

geneous parts of the sound-field – have to be situated within the sphere Sa with

radius ra, i.e. ra ≥ r0.

The general signal processing framework of a compact spherical loudspeaker

beamformer is depicted in Fig. 54. It is easy to see that the radial and angular

components of the beamforming algorithm are separated as will be described in

the following sections.
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6.7.1 Angular Beamformer Coefficients

Assuming perfect angular pattern re-synthesis on the sphere Sa, either the sound

particle velocity νm
n |ra

or the sound pressure ψm
n |ra

are given for a finite set of

spherical harmonics (n,m) with n ≤ Nc at radius ra, cf. [ZSH07, ZH07]. This

may be labeled as angular beamforming. The coefficients ψm
n (rp) of a desired

angular directivity pattern p (rp θ) at the new radius rp are calculated by spherical

harmonics analysis as

ψm
n (rp) =

∫

S2

p (rp θ) Y
m
n (θ) dθ. (321)

Therefore, the spherical harmonic coefficients to form a sharp directional lobe

p(rp θ)
!
= δ

(
1− θT θq

)
= δ (ϕ− ϕp, ϑ− ϑp) at direction (ϕp, ϑp) may be derived

as

ψm
n (rp) = Y m

n (ϕp, ϑp) , (322)

where δ
(
1− θT θq

)
represents an angular Dirac delta distribution.

6.7.2 Radial Beamformer

In order to achieve a desired angular sound pressure distribution at a target sphere

with radius r = rp, a radial beamformer is applied. Basically, this radial beam-

former inverts the wave propagation Eqs. (319) or (320) by a set of filters H
(eq)
n (ω).

It directly follows from the equations that filters for all orders m of the same order

n are equal; the constant multipliers 1/ρ0c are omitted to improve readability

H(eq,v)
n (ω) = i

h
′(2)
n (ω ∆ta)

h
(2)
n (ω ∆tp)

, (323)

or H(eq,p)
n (ω) =

h
(2)
n (ω ∆ta)

h
(2)
n (ω ∆tp)

. (324)

In the equations above, the variables kra and krp are interpreted as acoustic de-

lays ∆tp = rp/c and ∆ta = ra/c times the angular frequency ω = 2πf . This

re-interpretation proves to be very practical for the definition of the radial beam-

forming filters later on.

6.8 Dynamic Range Limits of the Radial Beam-

former

This section discusses the applicable dynamic range of the radial beamforming

filter shapes. Due to a strong low-frequency boost, most practical implementations

require the definition of lower cutoff frequencies. These are defined by bounding

the maximum filter gain to a desired dynamic range, i.e. white noise gain (WNG),

and obtained by observing the filter shapes.
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Figure 55: Frequency responses of radial beamforming filters with different target
radii rp, (a,b) rp = 2 ra, (c,d) rp = 4 ra, and (e,f) rp = 8 ra, derived for angular control
at ra. The left and right column correspond to sound particle velocity Eq. (323) and
sound pressure control Eq. (324), respectively. The feasible bandwidth ld (ωu/ωl[n]) is
indicated for a maximum gain of 30dB. The dashed vertical line indicates the upper
aliasing cutoff frequency abd the thin grey lines the asymptotic approximation of the
frequency responses; the points mark the lower cutoff frequencies, cf. [Pom08].
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Velocity control. The left column of Fig. 55 shows frequency responses of the

radial beamforming filters designed for angular velocity control at the radius ra

(cp. Eq. (323)). These frequency responses depend on the target radius rp and on

the order of the spherical harmonics used for synthesis. Assuming a dynamic range

of 30dB WNG for the simulations, a feasible synthesis bandwidth ld (ωu/ωl[n]) is

indicated for different spherical harmonic orders n; where ωu refers to the upper

and ωl[n] to the lower cutoff frequencies, respectively.

Example: The IEM compact spherical loudspeaker array [ZH07] features an

aperture radius of r0 = 30cm, resulting in an upper cutoff frequency of fu ≈
600Hz. The simulation results for a target distance of rp = 4 r0 show that

the spherical harmonics of third order may be reproduced properly with a lower

cutoff frequency of fl = 150Hz, whereas the harmonics of second order are well

synthesized above a minimal frequency fl = 75Hz, respectively.

Pressure control. In contrast, the frequency responses of the radial beamform-

ing filters in the right column of Fig. 55 are designed for angular pressure control

at ra. These responses are comparable to those for angular velocity control, but

the curves remain constant over a broad frequency range ω∆ta. In this particular

example, not all the filters require a lower cutoff frequency for their filter gains to

stay within a 30dB WNG dynamic range bound.

6.9 Radial Beamformer Implementation

In the following section, discrete-time implementations of radial beamformers for

accurate synthesis of directivity patterns are derived. As shown in the analytical

model presented above, these spherical equalization filters are defined by ratios of

the spherical Hankel functions and their derivatives. Once a discrete-time model

of the filters is obtained, it is simply applied to compact spherical loudspeaker

arrays, cf. Fig. 54.

6.9.1 Spherical Hankel Functions

The spherical Hankel functions of the second kind h
(2)
n (ω̃) and their derivatives

h
′(2)
n (ω̃) are defined as follows (cf. [GD04]):

h(2)
n (ω̃) = in+1 e−iω̃

ρ

n∑

l=0

(n+ l)!

l! (n− l)!

(
1

2iω̃

)l

(325)

h′(2)n (ω̃) = −n− 1

ω̃
hn(ω̃) + hn−1(ω̃), (326)

144



Note that ω̃ denotes the normalized frequency ω̃ = k r|r=c, which simplifies the

following derivations.

Laplace representation of spherical Hankel functions: Jérôme Daniel [DNM03]

and [ZH07] give an interpretation of the radial solutions providing a filter design

description, starting from the power series expansion of the spherical Hankel func-

tion4, with normalized argument ω̃ = kr|r=c:

h(2)
n (ω̃) = in+1 e−iω̃

ω̃

n∑

l=0

(n+ l)!

l! (n− l)!

(
1

2iω̃

)l

(327)

h′(2)n (ω̃) = −n + 1

ω̃
hn(ω̃) + hn−1(ω̃). (328)

The re-interpretation in the Laplace-domain also uses a normalized argument s̃ =

iω̃ and yields a rational function in s̃, and a delay e−s̃:

h(2)
n (s̃) = −in

∑n
k=0 bn(k) s̃k

s̃n+1
e−s̃ (329)

h′(2)n (s̃) = in+1

∑n+1
k=0 cn(k) s̃k

s̃n+2
e−s̃. (330)

For the coefficients bn(k), we get:

bn(k) =
(2n− k)!

(n− k)! k! 2n−k
. (331)

The coefficients of the numerator polynomials are integer numbers and may be

derived using the following difference schemes

bn(n) = 1, for n≥ 0 (332)

bn(k) =
(2n− k − 1)(2n− k)

2 (n− k) bn−1(k), (333)

for k < n

bn(k) = 0, else, (334)

whereas the integer coefficients of the derivative of the spherical Hankel functions

are given by

c0(k) = −b1(k), for 0 ≤ k ≤ 1 (335)

cn(k) = (n+ 1) bn(k) + bn−1(k − 2), (336)

for n ≥ 1 and

for 0 ≤ k ≤ n + 1.

4Note that the spherical Hankel functions of the second kind match the practical assumptions

in system theory and signal processing better than the functions of the first kind, which are anti-

causal. As a consequence, the Euler equation, the Sommerfeld radiation condition, the Green’s

function, and the plane-wave is defined differently, i.e. complex conjugate, in this work than in

textbooks in acoustics.
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Using a linear factorization of the Laplace-Domain description, it becomes easy to

estimate the resulting filter gain for every frequency by asymptotic approximation

(see Fig. 7).

If required, spherical Bessel and Neumann functions could be found by taking

the real- and imaginary parts

jn(s̃) =
h

(2)
n (s̃) + h

(2)
n (s̃∗)

2
, j′n(s̃) =

h
′(2)
n (s̃) + h

′(2)
n (s̃∗)

2
, (337)

yn(s̃) =
h

(2)
n (s̃)− h(2)

n (s̃∗)

2
, y′n(s̃) =

h
′(2)
n (s̃)− h′(2)n (s̃∗)

2
. (338)

It is worth mentioning that for a radial beamformer the different re-normalizations

with respect to ∆ta and ∆tp have to be taken into account when building the ratio

of the spherical Hankel functions:

hn(s∆ti) =
1

s∆ti

(

s− br

∆ti

s

)mod(n,2)

× (339)





div(n,2)
∏

l=1

(s− bl

∆ti
)2 +

ω2
l

∆t2i

s2



 ,

h′(2)n (s∆ti) =
1

s∆ti

(

s− b′r
∆ti

s

)mod(n+1,2)

× (340)





div(n+1,2)
∏

l=1

(s− b′
l

∆ti
)2 +

ω′2
l

∆ti

s2



 ,

with ∆ti = {∆tp,∆ta} depending on the respective radii. In particular, the scaling

ω̃∆ta and ω̃∆tp yields a displacement of the zeros with b→ b/∆ti and ω → ω/∆ti

by a linear scale factor 1/∆ti.

6.9.2 Discrete-Time Implementation of the Radial Beamforming Fil-
ters, Impulse Invariance

The conversion of the fractional filter functions defined in the Laplace-domain

can be performed using the bilinear transform [DNM03], or the corrected impulse

invariance technique [Pom08]. The corrected impulse invariance technique might

seem attractive because it does not distort the linear freqeuncy scale. However, in

many applications, it does not make much of a difference, as soon as the spectral

knee is at frequencies lower than a sixth of the sampling frequency.

Applying the (ordinary) impulse invariance technique to the first- and second-

order sections in Eq. (339) and Eq. (340), the discrete-time transfer function in z
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Figure 56: Two examples of digital filter structures for spherical spherical radial beam-
forming.

may be derived. The following transform pairs are very useful for calculation:

H(s) =
s− br
s

(341)

iiv.→ H(z) =
(1− b̃r)− z−1

1− z−1
, (342)

H(s) =
(s− bl)2 + ω2

l

s2
(343)

iiv.→ H(z) =
1− 2b̃l + (b̃2l + ω̃2

l + 2b̃l − 2) z−1 + z−2

(1− z−1)2 . (344)

The coefficients b̃l, b̃r, and ω̃l denote the respective Laplace-domain coefficients

scaled by the factor 1/fs, where fs is the sampling frequency. In Fig. 56 two

examples of the resulting filter structures for radial beamforming are given; Fig. 57

shows the match of the transfer functions to the analytic specifications, assuming

parameters suitable for the IEM icosahedral loudspeaker [ZH07].

Note that the filters derived in Hannes Pomberger’s diploma thesis [Pom08]

achieve a better fit, and a detailed comparison between different filter conversion

methods can be found there.
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Figure 57: Comparison of frequency responses in magnitude and phase showing the
proposed discrete-time radial beamforming filters (black) and their analytic counter-
parts (gray). A design example using ra = 0.3m, rp = 1.2m, and fs = 5512.5Hz was
considered.

6.10 Modeling Dynamic Limitations Due to Shared

vs. Isolated Array Speaker Enclosures

For a brief theoretical introduction to spherical acoustical radiators, let’s consider

a spherical shell with homogeneous sound field on either side, interior and exterior.

Further, assume the shell surface to have no own properties, except its being a

common sound particle velocity boundary condition for both sound fields. We

may also assume its interior radius ri being related to the fixed exterior radius r0:

• equals the surface radius kri = kr0, (infinitesimal thickness)

• smaller than the surface radius kri < kr0, (finite thickness)

• virtually larger than the surface radius kri > kr0, (negative thickness)

The third setup appears to be rather strange at first sight. Nevertheless, it tends

to be quite useful to account for changes in the medium. For instance increased

interior temperature Ti, on one hand, could lead to increased interior sonic speed

ci. On the other hand an enclosure filled with damping wool reduces the adiabatic

exponent κi and therefore scales the sonic speed ci. A re-interpretation as either

virtually smaller or bigger interior radius ri helps keeping the description simple

while using a single value k = ω
c

only. In doing so, the three variables k, ro, ri

are sufficient to describe at least 5 different physical quantities5 ω, c ∝ (κ, T ),

ci ∝ (κi, Ti), ri, ro.

5The careful reader might notice: she finds herself in the field of acoustics :-).
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Radiation to the exterior by the spherical velocity boundary. Using

the solutions of the wave equation in the spherical coordinate system, we are

able to describe the radiation of a given radial velocity distribution by using its

spherical harmonics transform νm
n |ro

=
∫

S2 v (θ)|ro
Y m

n (θ) dθ, and the spherical

wave spectrum ψm
n (kr) valid for r ≤ ro:

ψm
n |ro

= iρ0c
h

(2)
n (kr)

h
′(2)
n (kro)

νm
n |ro

. (345)

So given the above model, we obviously need a non-zero radial-velocity pattern

along this surface to produce radiation towards r ≤ ro.

Impedance of a common enclosure volume. The concept of the above

boundary condition provides a basis for the analysis of the impedances of the

boundary, associated with the spherical harmonics patterns of vibration. Here,

solely defined by the acoustics, the impedance is given as:

Zad,nm =
ψm

n |ro

νm
n |ro

(346)

= iρ0c

[

jn (kri)

j′n (kri)
+
h

(2)
n (kro)

h
′(2)
n (kro)

]

.

This description tells us, which amount of pressure ψm
n |ro

has to be applied to get

a surface velocity pattern νm
n |ro

= 1. Fig. 58 shows the shape of the impedance

curves over the diameter in wavelengths, i.e. φo

λ
= kro/π. Basically due to the

interior resonances of the higher-order modes, peaks appear in the curves, i.e.

the sound pressure due to resonances works against the unity velocity excitation.

Within the near-field of the Bessel functions though, the enclosure seems to sup-

port the higher-order vibration patterns.

Impedance of isolated enclosure volumes. In order to analyse the behavior

of isolated interior sound fields that prevent acoustic coupling via the interior, we

assume a simple model without angular velocities. Basically, we can divide the

surface into infinitesimal fractions, each of which can only be subject to the Y 0
0

mode of the enclosure. Mathematically, this is (numerically) simulated by the

impedance of a rectified interior boundary:

Zad,nm = iρ0c

[

j0 (kri)

j′0 (kri)

∫

S2

|Y m
n (θ)| Y 0

0 (θ) dθ +
h

(2)
n (kro)

h
′(2)
n (kro)

]

.

The result is depicted in Fig. 59. Basically, the influence of the notches can be

removed, but the support of the higher-order patterns gets lost.
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Figure 58: Impedance curves of the spherical boundary condition with varying ratio
between the radii ri/ro = [0.9, 1, 1.1] (gray, black, light gray) and for the orders
n = [0, 1, 2, 3].

Adding surface impedance. It is very convenient to add a uniformly dis-

tributed surface impedance z to the impedance from above, in order to account

for friction, stiffness, and mass of the surface. An RLC characteristics can be

assumed, like in the electroacoustic cap model

Zad,nm,1 = iρ0c

[

jn (kri)

j′n (kri)
+
h

(2)
n (kro)

h
′(2)
n (kro)

]

+ z,

Zad,nm,2 = iρ0c

[

j0 (kri)

j′0 (kri)

∫

S2

|Y m
n (θ)| Y 0

0 (θ) dθ +
h

(2)
n (kro)

h
′(2)
n (kro)

]

+ z.

Velocity control for radial beam-steering. In order to obtain a unity-gain

beam-pattern synthesis at the radius rp from a boundary of the radius ro, the ve-

locity must equal νm
n = 1

iρ0c

h
′(2)
n (kro)

h
(2)
n (krp)

. In analogy to the discrete-space loudspeaker

array model, the sound pressure distribution at the surface shall be controlled

with voltage distributions.

ψad,nm,1 =
h
′(2)
n (kro)

h
(2)
n (krp)

[

jn (kri)

j′n (kri)
+
h

(2)
n (kro)

h
′(2)
n (kro)

+
z

iρ0c

]

.

ψad,nm,2 =
h
′(2)
n (kro)

h
(2)
n (krp)

[

j0 (kri)

j′0 (kri)

∫

S2

|Y m
n (θ)| Y 0

0 (θ) dθ +
h

(2)
n (kro)

h
′(2)
n (kro)

+
z

iρ0c

]

.

Using the parameters of the big IEM icosahedral loudspeaker array, we can

try to use this rough method of analysis. As stated before, the magnitude of the

pressure depicted here should be proportional to a voltage distribution for the

excitation of the sphere. Consequently, performing a velocity control for radial
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Figure 59: Impedance curves of the spherical boundary condition with varying ratio
between the radii ri/ro = [0.9, 1, 1.1] and for the orders n = [0, 1, 2, 3], here the
interior angular sound particle velocities have been eliminated.

beam-steering at different focal distances rp from the origin reveals the required

dynamic range of the control voltages. The average surface impedance was as-

sumed to be 20 zme, the total impedance of all membranes. The influence of

spatial sampling and angular aliasing is not considered in this impedance model.

Fig. 60 compares these dynamic ranges for common versus separated enclosure

designs at different spherical harmonic orders n, using the rough, but fair, approx-

imation
∫

S2 |Y m
n (θ)| Y 0

0 (θ) dθ ≈ 1.

In comparison, common enclosure designs support the higher-order harmonics

more than the separated enclosures design. Therefore control requires less dynamic

range for the common interior at large synthesis radii rp, low frequencies, and n >

0. As a drawback, common interior designs exhibit interior resonances depending

on n and at lower frequencies than the separated enclosure design.

Using the above model, it becomes possible to include the limits of excursion,

current, voltage, or power, in order to calculate the bounds of a playback system.

However, these electrical and mechanical quantities become frequency dependent

without being scaled with the radius, therefore these examinations require analysis

in a more-dimensional space.

151



|g
| i

n 
[d

B
]

100

75

50

25

0

Figure 60: Required magnitude boost for pressure synthesis with a continuous spherical
membrane, comparing common enclosure (left column) with isolated enclosures (right
column).

152



Chapter VII

CONCLUSIONS AND OUTLOOK

This chapter summarizes the findings and contributions of the previous chapters.

It further provides outlooking considerations associated with the chapters and

some overall research questions concerning sound-radiation.

To begin with, a model has been given describing the complexity of the inter-

action between musician and instrument and its observable product, the sound-

radiation, see Figs. 2 and 4, which has been the matter of the presented practical

studies. Preliminarily to all practical experiments, prototypes and models thereof,

the required theoretical, algorithmic, and discrete implementation aspects are illu-

minated in Chapters 2–4. Chap. 2 has newly compiled a comprehensive theory of

the acoustics in spherical coordinates, giving mathematical equations and describ-

ing their properties. Some fundamental relations (e.g. spherical wave-spectrum,

boundary value problems, spherical source distributions) provide the means for

spherical holography and holophony. This powerful theory is capable of solving

analysis and synthesis problems for entire fields of sound-radiation or incident

sound.

Methods and algorithms for manipulation of sound-radiation or irradiation sig-

nals have been gathered in Chap. 3. These incorporate translation, rotation, mul-

tiplication, and rotational matching of sound-radiation or irradiation (Ambison-

ics). The algorithms for rotation and translation have been newly reformulated

for real-valued angular solutions, but the algorithm for translation is represented

in the frequency domain only. The algorithm should be extended to time-domain

implementations, using the filters from Sec. 6.9. This step will enable real-time

holophonic rendering of translated sources or fields, or time-domain fast-multipole-

methods. Beyond the presented methods, the palette of manipulation methods

should be extended towards artistic applications in the future: Angular warping,

sharpening, etc. could offer useful control in large-scale sound installations but

currently lack a mathematical formulation.

As required for all kinds of spherical arrays, a thorough research on various

sampling schemes on the sphere has been presented in Chap. 4. Discrete spherical

harmonics transform methods have been illustrated, which are applicable to differ-

ent sampling schemes. The measures sampling efficiency and numerical condition

have been introduced and applied together with known measures to characterize

important sampling schemes. Most of these rely on uniformly sampled spheres,
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so the question is raised of how to deal with incomplete spherical domains, for

which some hints have been given. A question of future research remains, how

anisotropically resolved spherical distributions can be represented.

After illumination of the background knowledge in the first four chapters, two

practical problems have been solved in Chap. 5 and 6. In Chap. 5 the capture

of sound-radiation by surrounding spherical microphone arrays has been investi-

gated. As main results the definition of a sound-radiation signal, its SIMO model

Fig. 26, and an analysis approach has been shown. In the various examples, the

interesting insights accessible through surrounding spherical microphone arrays

have been illustrated. The data offer good material for spatial audio rendering,

musical acoustics, computer music, and room acoustics. So future research should

consider collecting databases of sound-radiation from various instruments or sound

sources. However several questions remain, mainly in determining the resolution

required for the capture of sound-radiation. Alternatively to the presented anal-

ysis algorithm, it could be fruitful to test adaptive algorithms that potentially

enhance the estimation of a primal signal and radiation filters. Furthermore, the

feasibility of an algorithm for translation and rotation detection of the acoustic

origin should be investigated. Precise knowledge about this “true” origin could

reduce aliasing and truncation errors due to the centering problem.

In the last practical Chap. 6 a thorough study of means to model, measure,

and control compact spherical loudspeaker arrays has been presented. The findings

enable efficient control of the angular sound-radiation at a variable radius but

also exhibit limitations. On the one hand, discrete arrays create angular aliasing

at high frequencies. On the other hand, high-resolution synthesis is difficult at

low frequencies, due to dynamic range restrictions of both the electroacoustic

system, and signal processing. While angular aliasing can be minimized with small

array dimensions, the dynamic range problem worsens. A common enclosure is

supporting the low-frequency end but insufficiently. Hence, the questions of how

to stabilize low frequency synthesis satisfactorily and how to construct optimal

multi-band spherical arrays remain open fields of research.

7.1 Future Work

7.1.1 Room acoustics.

As a novel topic in future research, new room acoustic measurement problems can

be solved by combining compact spherical loudspeaker and microphone arrays.
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7.1.2 Sound-Radiation, its Effects and Perception

Looking further ahead, it is not fully understood, which aspects of sound-radiation

are perceivable in what way.

Direct sound. For instance, directivity in the free-field will mainly yield col-

oration of the perceived direct sound, and in special cases it can be used to evoke

diffraction on the listener’s body (e.g. at shoulders, HRTFs, time-variant cues due

to small head movements. . . ) [Sch09]. It is not clear yet, which perceptual effects

are generated by the source directivity in this situation.

Sound-radiation in rooms. Probably more commonly, directivity will have

several different observable effects in interaction with a room. As symbolically

shown in Fig. 61, directional sound-radiation effects

• the direct sound and early reflections:

– in magnitude,

– sound-coloration,

– local variation1 of angles of incidence, time- and magnitude-pattern,

• the magnitude and sound-coloration of the diffuse reverberation,

• the direct to reverberant ratio and its local variation.

Note that the acoustic properties of the floor, walls, and the ceiling have similar

effects on all components of the room impulse response observable at the listener’s

position. It can be supposed that rooms remain static, whereas sources may fre-

quently move, and that directional sources can create an increased local variation

of the sound field. Generally, an important research question is in how far and

under which circumstances the above-mentioned aspects allow for a perceptual

inference on

• properties of the sound source itself,

• its orientation,

• its position,

• the room.

1The expression local variation refers to the variations in a small area of the sound field,

observable by movements of the listener’s head.
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Figure 61: The directional room impulse response at the listener depends on the
properties of the room (geometry, surfaces), as well as the directional sound-radiation
of the sound source.

Conversely, it should be clarified, in which cases this inference collapses so that

the above changes are perceived directly as attributes of the room or sound-color

instead of spatial source attributes. And if so, does it yield an annoying or accept-

able auditory or audio-visual perception? Informal listening indicates that rapid

changes of the directivity pattern orientation during the ringing sound catches a

lot of perceptual attention. Therefore, dynamic variation of the orientation should

be taken into account as well. Synthetic stimuli as known in other psychoacous-

tic experiments could be used to start with in order to keep the effort small.

Nevertheless, the question which rooms, which listening and playback positions

are representative, and which situations allow useful spatial perception has to be

answered.

In combination of both, sound-radiation analysis and synthesis, many other

interesting issues should be explored in psychoacoustic experiments. It is neither

clear yet, which angular resolution is required to represent the sound-radiation of
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certain instruments, nor which resolution for its playback in different rooms. For

definite results, this will require very high-order spherical arrays to make sure.

7.1.3 Sound-Radiation Loop Machine

Finally, the combination of a surrounding spherical microphone and a compact

spherical loudspeaker array could be applied within an artistic context. In par-

ticular, a loop-machine, mimicking the sound-radiation in live-performances could

be an exciting tool to dream of. . .
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Appendix A

THE SOMMERFELD RADIATION

CONDITION

states that the impedance of a radiating source must be positive and real-valued

in the far-field, in order to allow for real power dissipation. To find the correct

radial solution for radiation, the far-field impedance for radiation is assumed to

be one of the following expressions

lim
r→∞

zr (kr) = lim
r→∞

ρ0c

i �
�
�cnm

cnm

{

jn (kr)

j′n (kr)

∣
∣
∣
∣

yn (kr)

y′n (kr)

∣
∣
∣
∣

h
(1)
n (kr)

h
′(1)
n (kr)

∣
∣
∣
∣
∣

h
(2)
n (kr)

h
′(2)
n (kr)

}

. (347)

The first two solutions, namely the real-valued jn (kr) and yn (kr), are not feasible

due to the complex multiplier ρ0c

i
. According to (42), different orders n 6= l of

the spherical Hankel functions of the first or second kind share the same order of

magnitude in the far-field:

lim
r→∞

∣
∣h(1|2)

n (kr)
∣
∣ =

1

kr
. (348)

Therefore in the limit the derivative, using the recurrence Eq. (41), simplifies to

lim
r→∞

h′(1|2)n (kr) = lim
r→∞

{

h
(1|2)
n−1 (kr)−

��������n+ 1

kr
h(1|2)

n (kr)
}

= lim
r→∞

h
(1|2)
n−1 (kr) . (349)

The far-field approximation for the functions h
(1|2)
n (kr) yields

lim
r→∞

h(1|2)
n (kr) =

e±ikr

(±i)n+1 kr
, (350)

and putting together Eq. (349) and (350) the impedance yields

ρ0c

i
lim
r→∞

h
(1|2)
n (kr)

h
′(1|2)
n (kr)

= ∓ρ0c. (351)

Therefore only the spherical Hankel function of the second kind fulfills the radia-

tion condition:

lim
r→∞

zr (kr) =







ρ0c

i
jn(kr)
j′n(kr) ��∈ R+, for jn(kr),

ρ0c

i
yn(kr)
y′

n(kr) ��∈ R+, for yn(kr),

−ρ0c��∈ R+, for h
(1)
n (kr),

ρ0c ∈ R
+, for h

(2)
n (kr).

(352)
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Appendix B

EFFICIENT RECCURENT EVALUATION

Efficient computation of Nm
n . We can define these coefficients by recurrence

relations, using:

N0
n =

√

2n+ 1

4π
, for n ≥ 0 (353)

Nm
n

Nm−1
n

= −
√

(1 + δ[m− 1])(n−m)!(n +m− 1)!

(n−m+ 1)!(n +m)!
(354)

= −
√

1

(n−m+ 1)(n+m)
, for 1 ≤ m ≤ n,

N−m
n

N−m+1
n

= −
√

(1 + δ[m+ 1])(n+m)!(n−m+ 1)!

(n+m− 1)!(n−m)!
(355)

= −
√

(n +m)(n−m+ 1), for −n ≤ m ≤ 1.

For the coefficients up to an order N, we use the following operation to compute

the number of coefficients:

N∑

n=0

n∑

m=−n

1 =

N∑

n=0

(2n+ 1) =

N∑

n=0

2n+

N∑

n=0

1 (356)

= 2
N(N + 1)

2
+ N + 1 = (N + 1)2. (357)

Efficient polynomial computation of Pm
n (µ). Note that the associated Legendre-

functions are polynomials multiplied by
√

1− µ2 for odd m. Consequently, the

polynomial part is conveniently described by its coefficients. In practical imple-

mentations, it is most efficient to build a tree of polynomial coefficients for all

n,m required and store the coefficients for later use. We use the following notion

to compute the number of coefficients: Given that the polynomials Pm
n (µ) are of
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the order n−mod(|m|, 2), see Fig. 62, we write

N∑

n=0

n∑

m=−n

n+ 1−mod(|m|, 2) =
N∑

n=0

[

(2n+ 1)(n+ 1)− 2
n∑

m′=0

mod(m′, 2)

]

=

N∑

n=0

[
2n2 + 3n+ 1− n−mod(n, 2)

]

=

N∑

n=0

(
2n2 + 2n+ 1

)
−

N∑

n=0

mod(n, 2)

=
2n3 + 3n2 + n

3
+ 2

n(n+ 1)

2
+ n+ 1− div(n+ 1, 2)

=
2n3 + 3n2 + n+ 3n2 + 3n+ 3n+ 3

3
− div(n+ 1, 2)

=
2n3 + 6n2 + 7n+ 3

3
− div(n+ 1, 2) (358)

(For further reference on arithmetic series see Bronstein et al [BSMM01]).

0 2 6 12

N + 1
n2 + n

2n + 2

degree 0 . . . N

order −n . . . n

n + 1−mod(|m|, 2)
(N + 1)2

2N3 + 6N2 + 7N + 3

3
− div(N + 1, 2)

coeffs

Figure 62: Data structure applicable for Legendre-polynomial coefficients and with
smaller depth for normalization constants, and spherical harmonics coefficients.

The associated Legendre functions for negative indices can be determined by

a linear scale factor:

P−m
n (µ) = gm

n Pm
n (µ), for n > 0 and 0 < m ≤ n (359)

g0
n = 1, for n ≥ 0 (360)

gm
n = − gm−1

n

(n +m)(n−m+ 1)
, for n ≥ 0, and 0 < m ≤ n (361)
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Appendix C

UNSTABLE SPHERICAL BESSEL

RECURRENCE

Note that the derivatives of sin(kr)/ (kr) become numerically unstable for small

values of kr, see Fig. 63. Therefore the recurrence scheme is not exact for small

kr. We propose to make use of its power series expansion (Wolfram [Wei08]):

jn (kr) =
(kr)n

(2n + 1)!!

[

1−
1
2
(kr)2

1! (2n+ 3)
+

(
1
2
(kr)2)2

2! (2n + 3) (2n+ 5)
+ . . .

]

. (362)

The expression (2n + 1)!! = 1 3 5 . . . (2n + 1) is the double factorial. Al-

ready the first term in the power series approximation will help to get around

the numerical errors, whenever kr lies in the ranges kr < 0.25
√

(2n+ 3) or

kr < n
√

1.8e− 8 (2n+ 1)!!. These ranges were empirically found when using dou-

ble precision (64 bit) floating point numbers. In that range we use the recurrence:

j̃0 (kr) = 1 (363)

j̃n (kr) =
kr

(2n+ 1)
j̃n−1 (kr) . (364)

0.02 0.06 0.25 1 4 16 64
−200

−150

−100

−50

0

kr

[d
B

]

numerical errors for the j
n
(kr) recurrence

Figure 63: Numerical errors appear in the recurrence for the spherical Bessel functions
evaluating small numbers.
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men,” Master’s Thesis, Institut für Elektronische Musik und Akustik,
Kunstuniversität Graz, Technische Universität Graz, 2004.

181

http://www.aes.org/e-lib/browse.cfm?elib=12793
http://web.maths.unsw.edu.au/~rsw/Sphere/
http://www.maths.unsw.edu.au/school/articles/me100.html
http://www.instructables.com/id/Low-cost-Spherical-Speaker-Array/
http://iem.at/projekte/publications/paper/modeling_radiation
http://iem.at/projekte/publications/paper/near/


[Zot08] ——, “Directional recording and analysis of sounds from
musical instruments,” in Proceedings of the 2nd ASA-
EAA joint conference, ACOUSTICS08, Paris, Jul 2008.
[Online]. Available: http://iem.at/Members/zotter/radiation
capture/TalkRadiationParis08/

[Zot09] ——, “Sampling strategies for acoustic holography/holophony on the
sphere,” in Fortschritte der Akustik, NAG/35. DAGA International
Conference, Rotterdam, 23rd March 2009.

[ZPF09] F. Zotter, H. Pomberger, and M. Frank, “An alternative ambisonics
formulation: Modal source strength matching and spatial aliasing,”
in Papers of the 126th AES Convention, Munich, May 2009.

[ZPS08] F. Zotter, H. Pomberger, and A. Schmeder, “Efficient directivity
pattern control for spherical loudspeaker arrays,” in Proceedings of
the 2nd ASA-EAA joint conference, ACOUSTICS08, Paris, Jul 2008.

[ZS06] F. Zotter and A. Sontacchi, “IEM Report 35/27: Zwischenreport zum
Projekt ”Virtual Gamelan Graz (VGG)”,” Graz, Tech. Rep., Oct
2006. [Online]. Available: http://iem.at/projekte/publications/iem
report/report35 06/project view

[ZS07] ——, “IEM Report 39/27: Icosahedral loudspeaker ar-
ray,” Graz, Tech. Rep., Jan 2007. [Online]. Avail-
able: http://iem.at/projekte/publications/iem report/report39
07/report39 07/file view

[ZSH07] F. Zotter, A. Sontacchi, and R. Höldrich, “Modeling a spherical
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