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Abstract

When the main microphone of a recording picks up a musical scene at a recording angle that appears too wide or
too narrow in the playback, it is very hard to correct this. To allow modifications in the post-processing of stereo, a
sound recording engineer might use coincident microphone arrays as double-MS or the sound field microphone arrays.
Higher order Ambisonics also uses array processing, but modification of the recording angle is uncommon, and it has
been considered too complicated compared to stereo. This paper shows how to practically achieve warping of the
recording angle in the processing of higher order Ambisonic recordings or productions. It concludes with an analytic
recurrence scheme that is applicable and easy to implement.

Introduction

When the musicians appear too closely spaced in the play
back of spatial audio material, the recording engineer
needs editing tools for stretching the spatial image. The
desired spatial audio editing effect is illustrated in Fig. 1.

(a) image too narrow (b) image corrected

Figure 1: Correction of a recording image that appeared to
be too narrow.

Widening of a surround recording image for all di-
rections simultaneously is not feasible without overlap
or truncation. However, it is possible to widen the
surround image around one spot, while compressing it
on the opposite side. Gerzon et al. [1] proposed a
transformation to achieve such warping for first order
Ambisonic signals which was called “dominance effect”.
Sontacchi investigated a similar transform for horizontal-
only Ambisonics in his thesis [2]. Warping of the polar
angle is best achieved by bilinear transformation of its
cosine µ = cos(ϑ)

µ̃ =
µ + α

1 + αµ
. (1)

Fig. 2 illustrates the warping characteristics according
to Eq. (1). Figs. 3 (a) and (b) geometrically show
how positive and negative warping parameters α affect
the surround image. Circles on a sphere were used for
illustration, whereby the the gray dashed circles represent
the original patterns and the colored solid circles are the
warped ones. We describe warping of the zenith angle ϑ,
i.e. around the North pole, only. The warping parameter
α yields a shift of the equator by ǫ

ǫ = arcsin(α). (2)

Warping of any other spot in the surround image is
achieved by pre- and post rotation. Figs. 4 (a) until (d)

Figure 2: Mapping relation of bilinear warping.

(a) α < 0 (b) α > 0

Figure 3: Warping of a surround image by negative and
positive α, illustrated by circles on a sphere.

illustrate this procedure for warping on the horizon. The
direction of interest is rotated to the North pole before
warping, and rotated back afterwards.

Ambisonics

Ambisonics of orders up to N represent 3D surround
sound using an expansion of the surround audio signal
f(ϕ, ϑ, t) into spherical harmonics

f(ϕ, ϑ, t) =

N
∑

n=0

n
∑

m=−n

Y m
n (ϕ, ϑ)φnm(t), (3)

whereby Y m
n (ϕ, ϑ) are the spherical harmonics of order

n, degree m, and φnm(t) are the expansion coefficients.
The warped version of the signal f(ϕ, ϑ̃, t) with modified
angle ϑ̃ can also be expressed by the spherical harmonics
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Figure 4: Horizontal warping by pre and post rotation.

Ñ(m, ǫ) 0◦ 5◦ 10◦ 15◦ 20◦ 25◦ 30◦

m = 0 3 5 5 6 6 7 8
m = 1 3 5 5 6 6 7 7
m = 2 3 5 5 6 6 7 7
m = 3 3 4 5 5 6 6 7

Table 1: Required order Ñ for warping an N = 3
order Ambisonic signal by warping angles ǫ = arcsin(α) is
shown, depending on the index m of the Legendre-functions.
As a criterion, the re-expansion coefficients for normalized

functions below
N

m

n

Nm

n
′

|wm

n′n
| > −30dB were omitted for all n.

using different coefficients

f(ϕ, ϑ̃, t) =

Ñ
∑

n=0

n
∑

m=−n

Y m
n (ϕ, ϑ) φ̃nm(t). (4)

Note that the our representation of warping uses un-
normalized spherical harmonics to keep the presented
expressions simple; normalization is re-introduced in
Eq. (6). The expansion order Ñ > N of the warped signal
depends on the warping angle ǫ, cf. Tab. 1.

The warped Ambisonic signals are elegantly obtained by
a weighted sum of the original Ambisonic signals

φ̃m
n′ =

∑

n

wm
n′n φm

n . (5)

A new way of calculating wm
n′n by applying the recurrence

relations derived in [3] is presented after the coming
section.

In order to convert the warping coefficients to be appli-
cable to normalized Ambisonic signals, the normalization
constants Nm

n need to be involved in this way

w
m,(normalized)
n′n = wm

n′n

Nm
n

Nm
n′

. (6)

Magnitude Pre-Emphasis

Sources widened by warping are represented with in-
creased energy which is proportional to their growth. In

order to stabilize the loudness, the surround signal must
be weighted accordingly before warping. This is achieved
by

f(ϕ, ϑ, t) · g(ϕ, ϑ) =

N
∑

n=0

n
∑

m=−n

Y m
n (ϕ, ϑ)φm

n (t), (7)

g(ϑ) =
1 + α cos(ϑ)√

1 + α2
. (8)

For strong warping this operation increases the required
order by 1. The corresponding modification of the
Ambisonic signals has been derived in [3] and includes
thinkable normalization here

φm
n (t) = Nm

n

α
n+m
2n+1

φ̂m

n+1(t)

Nm

n+1

+
φ̂m

n
(t)

Nm

n

+ α
n−m+1
2n+1

φ̂m

n−1(t)

Nm

n−1

√
1+α2

,

(9)

whereby φm
n (t) are the coefficients of the pre-emphasized

surround signal and φ̂m
n (t) are the original coefficients.

Warping Coefficients

Initialization. Some warping coefficients for m = 0 can
be initialized by simple expressions according to [3]

w0
n′0 = 2n′+1

2

∫ 1

−1 P 0
n′(µ) dµ = δn′,0 , (10)

w0
0,1 = 1

2

∫ 1

−1
µ+α
1+αµ dµ

= α2−1
2α (ln(1 + α) − ln(1 − α)) + 1

α . (11)

All other coefficients can be calculated by applying the
recurrences in the following order, cf. Figs. 5 and 6:
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(b) Recurrence 2

Figure 5: Initialization, Recurrence 1, and 2.

Recurrence 1 and stabilization. The first recurrence
delivers coefficients for m = 0 and n = 1, cf. Fig. 5 (a).
However it is not always numerically stable. There is an
estimate of the values produced by the first recurrence,

ŵ0
n′+1,1 = (−1)n′

1.3 (0.0235 ǫ7.1)n′/7 cos ǫ, (12)

which has been found by regression of the filter coeffi-
cients on a double-logarithmic scale. If actual recurrence
diverges the coefficients are replaced by the estimate
values, as expressed by Eq. (13).
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(a) Recurrence 3
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(b) Full set of resulting coefficients

Figure 6: Recurrence 3 and the set of coefficients obtained by all recurrence relations.

w0
n′+1,1 =

{

− 2n′+3
α (n′+1)w

0
n′,1 −

n′(2n′+3)
(n′+1)(2n′−1)w

0
n′−1,1 + 1

α w0
n′+1,0 + 2n′+3

n′+1 w0
n′,0 + n′(2n′+3)

α (n′+1)(2n′−1)w
0
n′−1,0

ŵ0
n′+1,1 if |w0

n′+1,1| > |ŵ0
n′+1,1| and n′ > 0

(13)

w0
n′,n+1 = w0

n′,n−1 −
(n′+1)(n′+2)(2n+1)

n(n+1)(2n′+3) w0
n′+1,n + n′(n′−1)(2n+1)

n(n+1)(2n′−1) w0
n′−1,n (14)

wm
n′+1,n = 2n′+3√

1−α2(n′+m)(n′+m+1)

(

−α
(n−m+1)(n−m+2)(n′+m)

(2n+1)(2n′+3) wm−1
n′+1,n+1 −

(n−m+1)(n−m+2)
2n+1 wm−1

n′,n+1

+ α
(n+m−1)(n+m)(n′+m)

(2n+1)(2n′+3) wm−1
n′+1,n−1 + (n+m−1)(n+m)

(2n+1) wm−1
n′,n−1

− α
(n−m+1)(n−m+2)(n′−m+1)

(2n+1)(2n′−1) wm−1
n′−1,n+1 + α

(n+m−1)(n+m)(n′−m+1)
(2n+1)(2n′−1) wm−1

n′−1,n−1 +
√

1−α2
(n′−m)(n′−m+1)

2n′−1 wm
n′−1,n

)

(15)

Recurrence 2. The second recurrence, given in
Eq. (14), is numerically not as critical as the first one,
and it is applied to find the required coefficients for
m = 0. In order to obtain suitably many values for
recurrence 3, recurrence 2 is applied for all n′ up to
Ñ + N + N − 1 − 1 − m.

Recurrence 3. The last recurrence, given in Eq. (15), is
numerically the least critical of all three presented ones.
It is applied to obtain the coefficients for all m 6= 0.

Conclusion

This paper discussed warping of 3D surround Ambisonic
signals, its aim and application. We contributed new
recurrence equations to compute the warping coefficients
without any matrix inversion. The equations have been
obtained from our previous work by selection of stable
recurrences and additional stabilization.
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