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Introduction

Today, the reproduction or synthesis of musical instru-
ments has reached an acceptable level of authenticity in
terms of timbre and temporal behavior. However, com-
mon loudspeaker systems are not designed to reproduce
the radiation patterns of musical instruments since they
always impose their own radiation characteristics. Spher-
ical loudspeaker arrays were developed to fulfill this task
and to take the step to a highly authentic reproduction
including the instruments’ directional information.

To obtain recordings of this information, surrounding mi-
crophone arrays have recently been constructed. They
collect sound pressure signals simultaneously on various
points on a sphere surrounding the instrument. These
signals can be converted to spherical harmonic compo-
nents for interpolation. Hereby, also other manipulation
is enabled, e.g. changing the orientation of the instru-
ment.

Spatial shifts of the instrument during recording, or a
decentralized acoustic location evoke higher order com-
ponents, which often cannot be reproduced on low-order
playback devices. Recently, algorithms to acoustically
center a decentralized instrument have been investigated.
Due to their high complexity, they are currently applica-
ble only for offline computation.

In this paper, we investigate a new approach using tan-
gential acoustic intensities. The tangential intensity can
be derived from sound pressure signals and indicates de-
centralization. Low computational effort and easy im-
plementation as an iterative gradient algorithm make it
promising for realtime applications like ”teleportation”
of musical performances from one space to another.

Radial and Tangential Intensity

The IEM surrounding microphone array has 64 sampling
nodes located on a sphere. The goal is to develop an
acoustic centering [2] algorithm for sound sources within
such an array. Thus, we derive the acoustical intensities
on a sphere and discretize later on to the sampling nodes.

The acoustical intensity is defined using the sound pres-
sure p and the velocity v

I =
1

2
<{p∗v}. (1)

The Euler equation gives the relation between pressure
and velocity,

v(ω) = −∇p(ω)

iωρ
. (2)

(a) Centered (b) Displaced

Figure 1: In a) an omnidirectional source lies in the origin
of the microphone array. In this case, the Intensity on the
surface has no tangential components. In b) the source has
been displaced from the origin, the Intensity now also has
tangential components Iθ on the array surface.

Given an angular unit vector θ on a sphere with the
radius r, the intensity can be split up into a radial and a
tangential component, using inner and cross products,

Ir(θ) = IT θ, Iθ = IT
(
I × θ
‖I × θ‖

× θ
)
. (3)

Integrating the radial intensity over the angles of the
spherical surface yields the radiated power of enclosed
sources. In addition to that, we propose the integral over
the tangential components to estimate the displacement
of the source, cf. Fig. 1,

Π = r2
∫
S
Ir dθ, d̂ ∝

r2
∫
S Iθ dθ

Π
. (4)

The estimation of a wave spectrum as given in [2] pro-
vides the required information to estimate the intensities
from data measured on a sphere as it estimates the sound
field analytically. If external sources/reflections are ab-
sent and the radiator has a finite order N , the exterior
problem remains with the radiating components

p(kr,θ) =

N∑
n=0

n∑
m=−n

cmn h
(2)
n Y mn (θ), (5)

where cmn is the estimated wave spectrum, h
(2)
n are the

spherical Hankel functions, and Y mn are the spherical har-
monics. The tangential derivative can be expanded into
spherical harmonics given the coefficients gmm

′

nn′ of the
differentiation theorem, cf. [4]

∇p(kr,θ) =

N+1∑
n=0

n∑
m=−n

∑
n′,m′

gmm
′

nn′ cm
′

n′

h(2)n Y mn (θ). (6)
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Figure 2: An omnidirectional source is shifted along an ar-

bitrary axis z, the resulting estimator d̂ is linear proportional
to the displacement d.

The radiated power Π is derived from the wave spectrum
by the Euler equation and the radial components, cf. [1],

Π =
1

2ρck2
cHNcN . (7)

The three components of the displacement estimator can
also be obtained from the wave spectrum, denoting the
corresponding values of h(2) as a matrix H and the dif-
ferentiation coefficients as a matrix G{x,y,z},

d̂{x,y,z} ∝
r2

2iωρ<{i(HNcN )HG{x,y,z}HNcN}
Π

. (8)

In the following section we will investigate if this result-
ing estimator d̂ is proportional to the real displacement
vector d of an omnidirectional source.

Centering An Omnidirectional Source

In fig. 2 the length of the resulting vector d̂ scaled with
a factor which has been estimated empirically is plotted
against the displacement vector d of a simulated omni-
directional source along an arbitrary axis z. Within a
certain, frequency dependent radius both values are lin-
early proportional. The limitation is caused by spatial
aliasing which occurs if higher order components arise
due to the displacement [2].

In the following examples, the resulting vector has been
scaled with the mean value of the ratio dz/d̂z. Displace-
ments of the omnidirectional source have been made in
10 cm steps from 10 to 50 cm. In fig. 3 a) the abso-
lute error is plotted for different frequencies. For a rough
comparison with real world data, a loudspeaker in a small
enclosure has been placed with the same displacements
in the IEM array. As excitation signal, an exponential
frequency sweep was used. Fig. 3 b) shows the results.

Both, the simulation and the measured data, have in
common a decreasing performance at higher frequencies
due to spatial aliasing. At low frequencies the simulated
source still gives good results whereas the loudspeaker
doesn’t. Possible reasons are the poor performance of
the room and the loudspeaker at low frequencies.

(a) Simulation
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(a) Measurement
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Figure 3: Mean error of the resulting estimator d̂ for source
displacements of 10 to 50 cm.

Conclusion

The sum of tangential intensity components on a sur-
rounding microphone array yield a resulting vector which
is linear proportional to the displacement of an omnidi-
rectional sound source and thus may be used for algo-
rithmic centering of the source. However, if the displace-
ment exceeds a frequency dependent radial limit, spatial
aliasing evokes distortion which may render the resulting
vector useless for centering.

In comparison to centering algorithms we recently pro-
posed, c.f. [2], the computational effort may reduce dra-

matically if using the proposed estimator d̂, since no op-
timization in the spherical volume of the array is needed
to obtain an estimate of the displacement vector.

In future studies, the influence of higher order compo-
nents of sources has to be investigated.
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