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Introduction

For three-dimensional recording with hemispherical mi-
crophone arrays it is advantageous to assume an acoustic
half-space bounded by a rigid horizontal plane from be-
low. The reflection on this plane simplifies what the array
records to limited-order even-symmetric spherical harmon-
ics. However, due to the reflection, the representation is
non-isotropic, which can be seen as distortion/interference
of any recorded limited-order direction from the upper
half space with its lower-half-space image source.
By contrast, conventional compact spherical arrays for
Ambisonic recording capture a full set of limited-order
spherical harmonics, i.e. include those with odd symmetry,
and therefore record with isotropic directional resolution.

In this article we propose to reduce unwanted artifacts
of hemispherical recordings by completion of the result-
ing even-symmetric spherical harmonic signals with odd-
symmetric ones. The improvements are discussed based
on the perceptually motivated performance measures E
and rE that characterize direction dependencies of the
loudness, mislocalization, and source width.

Hemispherical microphone arrays

The motivation to use compact hemispherical microphone
arrays is to capture only sounds from the upper hemi-
sphere. This is achieved by imposing a sound hard bound-
ary condition at the equatorial plane. In spherical coordi-
nates1, the angular solutions of the Helmholtz equation
fulfilling this boundary condition are those spherical har-
monics with even symmetry with regard to z. These
functions form an orthogonal and complete set of basis
functions on the unit hemisphere S2. On a hemisphere
of radius rM , the sound pressure due to incident sound
is accordingly expressed as the expansion into spherical
harmonics

p(rMθ) =

N∑
n=0

∑
−n≤m≤n
2|(m+n)

Y mn (θ) ψnm, (1)

where ψnm are the expansion coefficients and

Y mn (θ) = N
|m|
n P

|m|
n (cos θ)

{
cos(mϕ), for m ≥ 0

sin(mϕ), for m < 0

are the spherical harmonics of order n and degree m;

P
|m|
n denotes the associated Legendre functions, and N

|m|
n

is a scalar normalization term. The second line of the

1Within this article, we define the position vector in terms of
spherical coordinates as r = r θ, whereby r is the radial distance and
θ is the direction vector θ = [cos(ϕ) sin(θ), sin(ϕ) sin(θ), cos(θ)]T

with ϕ and θ being the azimuth and zenith angle, respectively.

sum over m includes the restriction to even-symmetric
spherical harmonics: n+m must be divisible by 2.

Modal sound field decomposition

Below an upper frequency limit, compact spherical micro-
phone arrays for Ambisonic recording can be assumed to
capture a limited-order sound pressure distribution. The
infinite series in eq. (1) can be truncated to a maximum
order N, and we may re-express it by the vector product

p(rMθ) = yT
e,N(θ) ψe,N, (2)

where ye,N(θ) := [Y mn (θ)]q=1...(N+1)(N+2)/2 and

ψe,N := [ψmn ]q=1...(N+1)(N+2)/2, with the integer
index q := n

2 (n+ 2) + m
2 + 1.

Due to the orthogonality of the even symmetric spherical
harmonics on the hemisphere S2, expansion coefficients
are obtained by ψnm = 2

∫
S2 Y

m
n (θ) p(rM )dθ for 2|(n+m).

As the microphone array captures a spatially discrete
sound pressure, the integral is typically re-formulated as

p = Ye,Nψe,N ⇒ ψe,N = Y †e,N p, (3)

with the pseudo-inverse ()† of the spatially discretized
matrix of harmonics Ye,N = [yT

e,N(θl)]l applied on the
spatially discretized sound pressure p = [p(rMθl)]l.

The coefficients of a surrounding source distribution re-
producing the recording are radial-filtered version thereof

φe,N = diag {wN(krM )}ψe,N, (4)

withwN(krM ) = [w0(krM ), . . . ,

N+1︷ ︸︸ ︷
wN(krM ), . . . , wN(krM )],

and wn(krM ) describing the holographic radial filters.

Reproduction

In general, reproduction in an Ambisonics framework
is conducted by mapping the modal representation of a
(continuous) surrounding source distribution to signals
for the particular (discrete) spherical loudspeaker setup.
Stacking the loudspeaker signals in a vector g and the
signals of surrounding source distribution in a vector φN,
this mapping is expressed by

g = DφN. (5)

The mapping matrix D is referred to as the decoder and it
requires an elaborate design to provide a psychoacoustical
accurate sound scene rendering. Existing techniques, e.g.
[1], allow for accurate decoding of sound scenes captured
by a full-spherical microphone array to hemispherical and
other partial-spherical speaker setups.



Nevertheless this does not imply that recordings of a hemi-
spherical microphone array are also reproduced without
distortion by a standard decoder for, e.g., a surround-
ing hemispherical loudspeaker array. Standard decoders
still require the full set of spherical harmonics signals,
whereas hemispherical microphone arrays provide the
even-symmetric ones, only. A direct rendering, is equiva-
lent to zeroing the odd-symmetric components and thus
to adding a symmetric lower-half space image sources to a
full set of spherical harmonics. This causes the need for a
conversion methods that optimally suppresses unwanted
artifacts from image source interference from below by
retrieving suitable odd-symmetric components.

Basic conversion

By proper radial filtering, the hemispherical array delivers
the coefficients of the even symmetric spherical harmonics,
cf. eq. (4), which yield an angular source distribution f̆(θ)
over the hemisphere S2

f̆(θ) =

{
yT
e,N(θ)φe,N for θ ∈ S2

0, for θ /∈ S2.
(6)

The aim of an accurate conversion is to find an vector φ̂N

that yields a distribution f̂(θ) consisting of the full set of
spherical harmonics up to order N,

f̂(θ) = yT
N(θ)φ̂N, (7)

which is optimal in some sense.

The basic conversion is optimal by approximating f̆(θ) in

terms of f̂(θ) in the least-square-error sense. This yields
the following optimization problem on the full sphere S2,

min

∫
S2
|f̂(θ)− f̆(θ)|2dθ. (8)

Its solution can be shown to be

φ̂N = Mφe,N, (9)

with the conversion matrix defined by the integral over
the hemisphere S2

M =

∫
S2

yN(θ)ye,N(θ)Tdθ. (10)

Performance measures

An error-free retrieval of the unknown odd-symmetric
components is infeasible. Quantifying the conversion per-
formance requires error measures of perceivable features.
The following measures are perceptually motivated and
their spatially discrete equivalents have proven to be psy-
choacoustically relevant estimates for the performance of
discrete amplitude panning functions, cf.[2].

The energy measure,

E =

∫
S2
|f(θ)|2dθ, (11)

is proportional to the perceived loudness of the surround-
ing source distribution, cf.[3]. The rE measure,

rE =

∫
S2 θ|f(θ)|2dθ

E
, (12)

is a vector pointing in the perceived direction of the
surrounding source distribution, and its length is propor-
tional to its angular spread, cf.[3]. Similarly as in [3],
we define the angular mapping error as the directional
deviation of rE from the actual source direction θs

εE = arccos
θTs rE
‖rE‖

. (13)

Similar to [3], the length ‖rE‖ is mapped to an angular
spread by

σE = 2 arccos(‖rE‖). (14)

For a single plane wave impinging from the direction
θs, the coefficients of the order-limited full-spherical
source distribution, f(θ) = yT

N(θ)φN, are φN = yN(θs).
In this case, the above measures yield ideal results:
E(θs) = const., εE(θs) = 0, and σE(θs) = const. This
ideal behavior is a consequence of the isotropy of the full
set of spherical harmonics.

Max-rE weighting: Weighting the components of each
order by a suitable factor an, ‖rE‖ can be maximized,
cf. [1]. The spherical source distribution with order
weighting is f(θ) = yT

N(θ) diag {aN}φN, where the vector

aN = [a0, . . . ,

2N+1︷ ︸︸ ︷
aN, . . . , aN] contains the weights.

Performance of the basic conversion: Figure 1 shows
the performance measures for the basic conversion of a
plane wave with max-rE weighting for different maximum
orders N. The results are only shown in dependence
of the zenith angle of the recorded plane wave. The
representation is invariant under azimuthal rotation. The
dashed lines in fig. 1c represent the direction-invariant
spread one would obtain from recording the full set of
limited-order spherical harmonics with max-rE weights.

Obviously, the energy measure of a converted hemispheri-
cal array recording becomes direction dependent, in par-
ticular for the first order. For the zenith direction, the
angular mapping error is zero in all conditions, oscillates
around zero elsewhere, and causes an elevated image for
sources from the horizon. Generally the mapping er-
rors decrease with the order. The ideal spread is nearly
achieved, except for first order.

Energy-completing conversion

The direction-dependent energy mapping of the basic con-
version motivates a further inspection of how the energy
distributes over the spherical harmonic components, in
the ideal case of an isotropic mapping. The spherical har-
monic components of a single plane wave with amplitude
s, impinging from θs, are φnm = s Y mn (θs). From the
closure relation,

m∑
m=−n

|Y mn (θ)|2 =
2n+ 1

4π
, (15)
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Figure 1: Performance measures for the basic conversion of a plane wave with max-rE weighting for different maximum orders
N in dependence of its incident zenith angle.
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Figure 2: Performance measures for the energy-completing conversion of a single plane wave with max-rE weighting for different
maximum orders N in dependence of its incident zenith angle.
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Figure 3: Performance measures for the energy-completing conversion of a plane wave with max-rE weighting for different
maximum orders N in dependence of its incident zenith angle in presence of a second plane wave with an incident zenith angle of
(a) to (c) θ2 = 0◦, (d) to (f) θ2 = 45◦, and (d) to (f) θ2 = 90◦.



it follows that for an order n the sum of abso-
lute squares over all m for a plane wave yields∑n
m=−n |φnm|2 = 2n+1

4π s2.

This sum for the nth order relates to squared absolute
value of the zeroth order component by

n∑
m=−n

|φnm|2 = (2n+ 1)|φ00|2, (16)

what can be used as an additional criterion for an ener-
getically completing conversion.

For a sum of uncorrelated plane waves, the above equa-
tion still describes the energy distribution of an ideally
isotropic capture after replacing the squared absolute
values by their expected values E

[
|φnm|2

]
. Thus for cap-

ture with a hemispherical array, it seems more than well-
justified to enforce an energy constraint by a reformulated
eq. (16) in addition to the original minimization problem:

min

∫
S2
|f̂(θ)− f̆(θ)|2dθ,

s.t.
n∑

m=−n
E
[
|φ̂nm|2

]
= (2n+ 1) E

[
|φ00|2

]
, (17)

for n = 1, . . . , N.

For notational convenience, we split the solution of
the above optimization problem into even- and odd-
symmetric components φ̂e,N, φ̂o,N. The solution of the
even-symmetric part yields

φ̂e,N =
1

2
φe,N. (18)

For a particular order n, the odd-symmetric part yields

φ̂o,n =
1

2
αnMo,n φe,N, (19)

with the matrixMo,n =
∫
S2 yo,n(θ)Tye,N(θ)dθ and scalar

αn =

√
(2n+1)E[|φ00|2]−E[‖φe,n‖2]

E[‖Mo,n φe,N‖2]
. (20)

Interestingly, this result is similar to the basic conversion
of eq. (9), except for the scalar factor αn that enforces
the constraint in every order n.

Performance for a single plane wave: For a single
plane wave with max-rE weighting, fig. 2 shows the per-
formance measures for the energy-completing conversion
eqs. (18) to (20) using different maximum orders N. Obvi-
ously, the energy measure in fig. 2a yields a perfect result
due to the new constraint. In addition, compared to the
basic conversion in fig. 1, also the angular mapping error
as well as the angular spread become almost ideal.

Non-additivity: In contrast to the basic conversion,
which is accomplished by a constant matrix cf. eq. (9),
the energy-completing conversion is non-additive due to
its adaptive scaling of the odd-components by the non-
linear factor αn. Hence, for a sum of two or more plane

waves, one could expect distortions in the mapping of the
individual plane wave components.
To illustrate this, we consider two plane waves with uncor-
related unit-variance signals, impinging from two different
directions φe,N = s1ye,N(θs1) + s2ye,N(θs2). Figure 3
shows the resulting performance measures for one plane
wave of varying zenith angle, assuming that the second
plane wave is coming from the same azimuth and its
zenith angle is fixed at θ2 = 0◦ in (a) to (c), θ2 = 45◦ in
(d) to (f), and θ2 = 90◦ in (d) to (f). If the directions of
both plane waves are the same, the performance is the
same as for a single plane wave. There is a slight tendency
for a plane wave close to the horizon to be louder. As
for the basic conversion, there is no angular error for the
zenith direction. The improvement the energy-completing
conversion achieved for one plane wave generally reduces
by the presence of the second one. Still, except for the
increased angular mapping error of the first order and
θ2 = 0◦, there is generally a slight improvement.

Considering the dependence on azimuth and zenith an-
gle separately, i.e. ye,N(ϕ, θ), the norm of the nth order
components is independent of the azimuth direction of
either of the plane waves, ‖ye,n(ϕ, θ)‖ = ‖ye,n(ϕ′, θ)‖.
Similarly the norm of Mo,nye,n(ϕ, θ) does not de-
pend on the azimuth direction, i.e. ‖Mo,nye,n(ϕ, θ)‖ =
‖Mo,nye,n(ϕ′, θ)‖. Consequently, the performance mea-
sures in fig. 3 remain unchanged when the plane wave
directions do not coincide in azimuth.

Conclusion

In this contribution we proposed a new energy-completing
conversion for hemispherical array recordings. For one sin-
gle plane wave, the conversion improves the performance
in terms direction dependent loudness, source width, and
angular mapping accuracy. The improvement compared
to the basic conversion deteriorates when a second plane
wave is present. However, there is a slight performance
improvement in almost all cases.

The rE performance measures concerning the angular
mapping error and source width become meaningless in
a diffuse sound field, which contains an infinitely large
number of uncorrelated plane waves. Because the en-
ergy constraint of the energy-complementing conversion
already enforces the energy distribution of an ideally
isotropic recording, we expect it to perform optimally for
the conversion of diffuse sound fields, again.
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