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ABSTRACT
Undoubtedly, engine sound power is a well-suited benchmark that characterizes the over-all sound emission
of, e.g., combustion engines in vehicles. A grade-1 standard procedure specifies a way to determine sound
power by simultaneous measurement using 20 microphones spherically surrounding the engine within an
anechoic chamber. In this contribution, we improve the achievable accuracy by utilizing a grid of only 16
microphones that provides more accurate sampling and more accurate estimation, in particular in combination
with the consideration of acoustical near-fields.

In a theoretical study we can demonstrate the improved accuracy based on (i) rotation statistics of sim-
ulated engine measurement data, (ii) a diffuse spherical model, and (iii) a directional spherical model of a
velocity source. In all the three cases, the sound power is exactly known, which permits an accurate analysis
of emerging uncertainties. From practical testbed measurements, we can validate the proposed grade-1 pro-
cedure by demonstrating the preservation of basic statistical relationships found in theoretical considerations.
Finally, this article discusses measures obtained by analyzing the 16 microphone signals, suitable to indicate
the frequency range in which a grade-1 accuracy can be expected.
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1. INTRODUCTION

Sound power measurement procedures are designed for high reproducibility. Standards specify tolerances
for acoustic environments, equipment, and also layouts for the microphone positions. As one of the grade 1
(precision) methods for sound power measurement, the ISO 3745 [1] proposes to use a grid of M = 20

(if necessary 40) points on a sphere for simultaneous measurements in an anechoic room. The idea of the
proposed grid is to achieve equal-area coverage. Far field conditions are assumed to be met when the radius
R of the measurement array is at least a fourth wave length, one meter, and twice the largest source diameter.
At one frequency, the sound power is estimated from the spatial sound pressure samples pi

Π̂ =
1

2

1

ρc

4πR2

M

M∑
i=1

|pi|2, (1)

where c is the speed of sound and ρ is the density of air. The equation text in the norm is just differently
formulated as it requires dB values and gathers constants, corrections, and normalizations. The expression
is a discretized version of the analytic far-field sound power Π = 1

2
1
ρc

∮
S
|p|2 dS using the average surface

element 4πR2

M
. The far-field sound power relates to the definition of sound power Π = 1

2

∮
S
<{pv∗} · dS by

acknowledging that the particle velocity v is strictly aligned with the outward normal and proportional to the
sound pressure v = p

ρc
in the far field.
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Even under perfect measurement conditions (perfectly calibrated and placed microphones, perfectly ane-
choic room), estimation according to the discretized far-field sound-power integral of Eq. (1) inherits two
intrinsic sources of estimation uncertainty:

- violation of the far field assumption at low frequencies,

- effects of the spatial discretization (sampling grid and its orientation).

Even if it is not generally possible to avoid above-mentioned uncertainties, a drastic reduction of uncertainty
stemming from near-fields and spatial sampling has been demonstrated in [2]. In this recent work, we re-
duced uncertainties by proposing an alternative 16-points spherical sampling grid and involved near fields in
the estimation to avoid the typical, systematic sound power over estimation at low frequencies. The study of
the improvements was based on the sound field radiated by a simulated car engine. Still, the proposed mea-
surement technique used a measurement radius of R=1.4 m, and the 16-points grid nearly appears irregular
to set up, angularly.

In the present paper, first the near-field involving estimator is recapitulated, and the achievable accuracy
for a more practical measurement is discussed with a smaller measurement radius R=75 cm. The new
proposition is to arrange the 16 points in three rings and one measurement point at the zenith, as given in
Table 1. The condition number κ = 2.09 for spherical harmonics decomposition with the new 16-points
grid is only slightly worse than the condition number κ = 1.55 of the originally proposed grid in [2], which
is acceptable considering the practical advantages. The analysis of uncertainty in this paper is extended by
two types of artificial sources, and a practical application is given, for which it is desirable to estimate the
high-frequency boundary of accuracy from the measured data.

Table 1: Proposed practical spherical sampling grid of 16 points in 4 height levels (given in azimuth φ and
zenith angle θ).

pos. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
φ 0◦ 20◦ 100◦ 140◦ 220◦ 260◦ 340◦ 0◦ 60◦ 120◦ 180◦ 240◦ 300◦ 60◦ 180◦ 300◦

θ 0◦ 60◦ 60◦ 60◦ 60◦ 60◦ 60◦ 110◦ 110◦ 110◦ 110◦ 110◦ 110◦ 150◦ 150◦ 150◦

2. COMPOSITE NEAR-FIELD-INVOLVING SOUND POWER ESTIMATOR

In [2] we proposed to use a composite sound power estimator

Π̂ =
1

2ρc
min

{
4πR2

M

M∑
i=1

|pi|2,
∑
n,m

|ψ̂nm|2

k2|hn(kR)|2

}
(2)

where ψ̂nm are the estimated coefficients of the sound pressure expanded in spherical harmonics, hn(kR)

are the spherical Hankel functions of the second kind, and k = ω/c is the wave number. This estimator is
able to avoid near-field induced over-estimation at low frequencies by its right-hand argument (see appendix).
The argument on the left is the original discretized far-field sound power estimator, which is more accurate at
high frequencies, where the other estimator has a slight (0.3 dB) systematic over-estimation tendency related
to the condition number κ 6= 1 for the spherical harmonics decomposition that obtains {ψ̂nm} from {pi}.

Using a well-distributed spherical measurement grid defined by a set of Cartesian unit vectors {θi}, the
sound pressure samples p = [p(θi)]i=1...M can be expanded into a linear combination of spherical harmonics
p =

∑
n,m ψnmY

m
n (θ) using the unknown coefficients ψnm. To find the coefficients, the sampled spherical

harmonics up to the orders 0 ≤ n ≤ N are written into a matrix YN = [Y m
n (θi)]

n=0...N,|m|≤n
i=1...M , as well as the

coefficients ψN = [ψnm]n=0...N,|m|≤n. The best fitting pN = YNψN estimate is then obtained by

ψ̂N =
(
Y T

N YN

)−1
Y T

N p. (3)

To enable inversion, the sampling grid must contain at least M ≥ (N + 1)2 measurement positions that
provide a reasonable low condition number of YN. Inversion is ill-conditioned using the grid proposed in the
ISO 3745 [1]. Moreover, we could show in [2] that the number of sampling points must equal the number of
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(a) 20pt. measurement grid from ISO 3745 [1] (b) proposed 16pt. measurement grid

Figure 1: Sampling scheme.

estimated spherical harmonic coefficients to avoid under-estimation at high frequencies. An optimal grid of
16 minimum determinant points [3] was suggested. A new arrangement of 16 points is proposed here (Tab. 1),
which is more practically arranged in horizontal rings, Fig. 1b.

3. THEORETICAL STUDY

This section discusses the accuracy of the different sound power estimators and grids at a measurement radius
of R=75 cm with the formulation of a 19th-order continuous sound pressure distribution as a starting point:

p(kR,θ) =
19∑
n=0

n∑
m=−n

ψnm(kR)Y m
n (θ), (4)

whose exact sound power (ground truth) is known to be, see also [4],

Π =
1

2

1

ρ c

1

k2

∑
n,m

|ψnm|2

|hn(kR)|2
. (5)

For the simulation study, the continuous sound pressure distribution of Eq. (4) is sampled on the spherical
measurement grid {θi} to obtain the discrete sound pressure values pi = p(θi) required by the estimators
Eqs. (2,3) and Eq. (1).

Obviously, the orientation of the measurement grid relative to the source does not change the radiated
power. However, the estimated sound power might vary for different relative orientations. As the relative
orientation is arbitrary, we propose to use this variation to quantify the uncertainty caused by the measurement
grid. Using J uniformly distributed random rotations of a unit sphere, see [5, p. 117], in terms of rotation
matrices Rj , a set of sound power estimations {Π̂1, . . . Π̂j, . . . Π̂J} is achieved by applying the random
rotations to the measurement grid {Rj θi} prior to discretization. The deviation from the ground-truth value
in dB is calculated by ∆Lw,j = 10 log10(Π)− 10 log10(Π̂j).

Simulated engine data: This study uses a simulated engine data obtained from the AVL Excite3 environ-
ment. The sound pressure emitted by the simulated engine defines ψnm(kR) at R=75 cm. The simulation
yields values ψnm(kR) for integer multiples fl = l f0 of a fundamental frequency f0.

To improve readability of the sparse engine sound power spectra, the resulting estimators Π̂j were octave
smoothed. To gather sound power values Π(fl) available at the bins l, a Hann window was employed. The
particular estimation of the octave-smoothed value around the center frequency fc is obtained by the sum of
bin values Π(fl) times the average of the Hann window across the each bin interval f ∈ [fl−f0/2; fl+f0/2]

Π(fc) =
∑
l

Π(fl)
1

f0

∫ f0/2

−f0/2
cos2(π

2
min{| log2(fl + f)− log2(fc)|, 1}) df. (6)

The estimation uncertainty according to ISO 3745 [1] with M = 20, cf. Fig. 1a, and Eq. (1) is shown in
Figs. 2(a) to (d). The deviation ∆LW of the sound power estimators Π̂ from the ground truth Π was analyzed

3http://www.avl.com/web/ast/excite
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with the above-proposed rotation statistics using 1000 random rotations. The median value of ∆LW is shown
as solid curve, the 50% inter-quartile range as dark-gray area, and the 95% inter-quartile range as light-gray
area. The results show the typical over estimation at low frequencies due to near fields; the step-shaped
contours at higher rpm numbers (3000, 4000) are merely due to the sparse appearance of the lowest spectral
component at (50, 67) Hz.

Using the composite, near-field-involving estimator Eqs. (2,3) and the 16 point grid from Tab. 1 / Fig. 1b
yields the rotation statistics shown in Figs. 2 (e) to (g). The composite estimator does not exhibit systematic
over estimation at low frequencies and minimizes the statistical spread at most frequencies.

In the analysis of our previous paper [2], the near-field effects were less drastic, as a larger measurement
radius R=1.4 m was simulated. Obviously, the near-field-involving estimator is suitable to obtain accurate
results for much smaller measurement setups. This is of practical relevance for testbed setups, in which
engines are typically attached to the testbed at a height of about 85cm, and larger setups would need to
extend below the floor.

3.1 Directional spherical cap radiator model

The above study deals with one simulated engine in four different rpm conditions. To obtain a less specific
and maybe more general insight about what sound power estimation does, an artificial radiator is introduced
that should produce worst-case results, in particular at high frequencies. This is achieved by modeling a
vibrating spherical cap of unit velocity. The spherical harmonics expansion of a velocity pattern on a sphere
is expressed by the boundary condition

vr(θ) =
∞∑
n=0

m∑
−m

γnmY
m
n (θ). (7)

For a spherical cap, the coefficients γnm for sound particle velocity become

γnm = Y m
n (θc)wn(α), (8)

where θc is the direction of the cap center, and αn(α) is the order weight depending on the opening angle of
the spherical cap α,

wn(α) =

{
Pn−1(cos(α

2
))− cos(α

2
)Pn(cos(α

2
)), n > 0,

1− cos(α
2
), n = 0.

(9)

Assuming the spherical cap radiator’s surface at the radius r = a, we obtain the coefficients ψnm(kR) at the
radius R as, cf. [4]

ψnm(kR) =
ρ0c hn(kR)

ih′n(ka)
γnm. (10)

In the simulation study for a spherical cap radiator, with α = 14◦ and a = 0.4 m, the direction θc is
randomly varied in 1000 instances (rotation statistics). Fig. 3 shows the statistics revealing the sound power
uncertainty for both estimators. As before, the solid line marks the median value, the dark-gray area marks
the 50% inter-quartile range, and the light-gray area marks the 95% inter-quartile range.

For the ISO estimator in Fig. 3a, an over-estimation bias of about 1 dB is found at low frequencies, and
the uncertainty at low frequencies is not as narrow as it could be, cf. Fig. 3b. The low-frequency near-field-
induced over estimation for the ISO estimator is not as large as with the simulated engine. This follows
a simple explanation: the spherical cap radiator always contains a 0th order component (omnidirectional),
which dominates the radiated sound power at low frequencies.

While the composite estimator reduces the statistical spread at frequencies below 300 Hz, around 300 to
500 Hz there seems to be a transition effect yielding larger (but more symmetrical) spread for the composite
estimator, cf. Fig. 3b. At larger frequencies, both estimators behave similarly.

Generally, the spherical cap radiator poses a worst case to high-frequency sound power estimation: As
soon as the main lobe of its directional sound radiation fits between the measurement positions, the estimator
is prone to severe under estimation of sound power. At the same time, whenever one of the measurement
positions lies on the main lobe of radiation, sound power gets largely over estimated. Both effects yield an
increased spread and a bias towards a statistically more likely under estimation of sound power.
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Figure 2: Rotational statistics of sound power estimator uncertainty for simulated engine measurement
data for different rpm using the M = 20 points estimator Fig. 1a / Eq. (1) from the ISO 3745 [1] shown in
(a) to (d) and the M = 16 grid from Tab. 1 / Fig. 1b using the estimator [2] in Eqs. (2,3) for (e) to (h).
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(a) M = 20 points estimator Fig. 1a/Eq. (1) from the ISO 3745 [1]
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(b) M = 16 grid from Tab. 1/Fig. 1b using the estimator [2] in Eqs. (2,3)

Figure 3: Rotational statistics of the sound power estimation uncertainty using the simulated cap model
radiator and the different estimators.

3.2 Diffuse spherical radiator model

As opposed to the directional spherical cap radiator model described in the previous subsection, we assume
a diffuse spherical radiator with random-velocity boundary condition. The spatially normally distributed
random velocity pattern on the surface of such a radiator transforms to normally distributed expansion coeffi-
cients γnm to be inserted in Eq. (10).

In the simulation study for the diffuse radiator, 1000 coefficients sets of γnm were randomly generated
to cover sufficiently much variation in the random process for the statistics on deviations of sound power
estimators. An additional rotation statistics of these 1000 random coefficient sets can be omitted: Random
rotations of random patterns are also random.

Fig. 4 shows the deviation statistics of both the sound power estimators. The diffuse radiator exhibits the
typical near-field-induced over estimation at low frequencies when using the ISO estimator in Fig. 4a. The
average over estimation can be less than with the engine simulation in Fig. 2 (a) to (d), but the uncertainty
is much larger due to the random composition of the spherical harmonic components. For the diffuse radia-
tion model, the composite estimator removes the over estimation and yields a negligible uncertainty at low
frequencies, see Fig. 4b.

Note that with the estimator of Eq. (1), the only case where near-fields are entirely absent is when the
zeroth-order component γ00 is dominant. As this is a seldom limit case of the random process, the sound
power at low frequencies can only be over estimated in Fig. 4a.

Closer inspection of Figs. 4a and 4b reveals that the high-frequency sound power uncertainty remains
constant for the diffuse radiator after a certain frequency (1 kHz). Above this limit, the number of observable
degrees of freedom of the random process is limited by the number of measurement points. Hence, the
M = 20 grid has a slight, but negligible, advantage at higher frequencies when compared to estimation with
M = 16 points: the larger number of points yields a reduced statistical spread.
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(a) M = 20 points estimator Fig. 1a / Eq. (1) from the ISO 3745 [1]

f / Hz

∆
L
w
/
d
B

 

 

31.5 63 125 250 500 1k 2k 4k 8k
−4

−3

−2

−1

0

1

2

3

4

Q
0.025

Q
0.25

Q
0.5

Q
0.75

Q
0.975

(b) M = 16 grid from Tab. 1 / Fig. 1b using the estimator [2] in Eqs. (2,3)

Figure 4: Statistics of the sound power estimation uncertainty using a stochastically diffuse radiator model
and the different estimators.

(a) Testbed measurement setup.
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(b) Measured sound power for 0%, 50%, 100% loads compared to simulated
engine at 2000 rpm. Note that the lower frequency limit of the testbed is about
125 Hz; the peak arround 63Hz is due to the room.

Figure 5: Sound power estimation using the proposed 16-points measurement grid and the composite
estimator in practice.

4. TESTBED MEASUREMENTS

On September 9th in 2015, a combustion engine depicted in Fig. 5a was measured in AVL’s larger engine
testbed to apply the new 16-points measurement grid in Tab. 1 and the estimator in Eqs. (2,3) in practice.

Fig. 5 compares the measured sound power using the proposed grid and estimator in comparison to the
sound power from the simulated engine of theoretical study about uncertainty with 2000rpm. The measured
and simulated sound power spectrum are obviously not the same. However, the simulated engine is not
the same as the one used for the testbed measurements and thus the engines might not only differ in their
sound power spectrum but also might have different radiation patterns as well. Therefore the question of how
accurately the sound power is estimated in the practical testbed measurement is difficult to answer.
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Figure 6: Rotation statistics of low- to all-order energy ratio B(f) compared to statistical spread for
different engine speeds (a) to (d), and the analysis for the spherical cap radiator model (e) and diffuse
radiator model (f)
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Figure 7: Rotation statistics of low- to all-order energy ratio B(f) for the testbed measurement.

Estimation of upper frequency limits: Nevertheless, some similarity comparisons and parallels can be
made between measures and statistical inter-quartile ranges of all simulated radiators, if there is a reasonable
way to define crucial measures of describing where uncertainty begins.

As a key point in this endeavor, we observe that the composite, near-field-involving estimator mainly
exhibits a statistical spread in sound power estimation that increases with frequency for all types of radiators
used in the analysis about the statistical estimation uncertainty, see Figs. 2 (e) to (g), Fig. 3b, and Fig. 4b.

Thus it is a plausible assumption that for any radiator of finite size and complexity, the acoustic radiation
efficiency of higher-order spherical harmonics components increases with frequency and becomes responsible
for the increase in statistical spread. To capture this behavior, the ratio of low- to all-order energy of the
estimated spherical harmonic coefficients ψ̂nm is taken as a characteristic measure

B(f) = 2

∑1
n=0

∑n
m=−n |ψ̂nm|2∑3

n=0

∑n
m=−n |ψ̂nm|2

. (11)

Figs. 6 shows minimum, maximum, and median of B(f) for the radiators of the theoretical study, calculated
for random grid rotations. For the diffuse radiator model a single random coefficient set was employed to
focus the investigation of interdependencies between B(f) and ∆Lw to a single instance of a source.

For the simulated engine, Figs. 6 (a) to (d) illustrate that the transition of the measure from B(f) < 1

to B(f) > 1 is nicely able to predict the upper frequency limit for the simulated engine, above which the
spread of the sound power estimation uncertainty increases. For the spherical cap radiator model in Fig. 6 (e)
and the diffuse radiator model in Fig. 6 (f), the transition of B(f) through a ratio of 1 is similar up to 600 Hz.
For higher frequencies the minimum of the estimator is not as monotonic as for the engine simulation. In this
frequency the estimator is not meaningful, as components with spherical harmonics order > 3 are aliased
into the estimated ψ̂nm, n ≤ 3.

Fig. 7 shows the ratio of low- and all-order spherical harmonic coefficients B(f) for the testbed mea-
surement. It shows a very similar characteristic to the simulated engine data. Hence we assume that the
B(f) < 1 to B(f) > 1 transition is a plausible indicator for the upper frequency limit for accurate sound
power estimation. As all modeled radiators exhibit rather similar uncertainty, at least up to 2 kHz, one can
expect a similar increase of uncertainty for the practical testbed measurement.

5. CONCLUSION

In this contribution we reviewed a composite near-field-involving sound power estimator presented in [2] that
is able to strongly suppress over estimation at low frequencies and leads to a more accurate and practical
measurement procedure, especially if the sensors are not in the far-field of the radiating source. We showed
the statistical uncertainties of the estimator for several types of sources (simulated combustion engine, simu-
lated spherical cap radiator, simulated diffuse spherical radiator) in a measurement setup of 16 microphones
in horizontal rings and at a radius of only R = 75 cm and compared it to the 20 microphone setup proposed
in the ISO 3745 [1].

Moreover, the application in practice was shown based on a testbed measurement of a combustion engine,
for which no ground truth is accessible in most cases. Still, we managed to demonstrate the ratio of spherical-
harmonic coefficient energies as plausible measure indicating the upper frequency limits of the estimation
procedure.
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A. NEAR-FIELD-INVOLVING ESTIMATOR

According to Williams [4], the sound pressure on the surface of a sphere of radius r due to an arbitrary source
within sphere is expressed by

p =
∞∑
n=0

n∑
m=−n

cnm(k)hn(kr)Y m
n (θ), (12)

where hn(kr) are the spherical Hankel functions of the second kind, Y m
n (θ) are the spherical harmonics,

k = ω/c is the wave number, and the coefficients cnm(k) are the wave spectrum of the source. The radiated
sound power of the source is determined by the wave spectrum, cf.[4]

Π =
1

2

1

ρ c

1

k2

∑
n,m

|cnm(k)|2. (13)

If we had a spherical harmonics expanded sound pressure ψnm at r = R, we would obtain a sound power
estimate

Π =
1

2

1

ρ c

1

k2

∑
n,m

|ψnm|2

|hn(kR)|2
(14)

through cnm = ψnm

hn(kR)
that takes near field components into account, which appear for higher than zeroth

order.
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