
61McCartney

James McCartney
850 Stendhal Ln.
Cupertino, California 95014 USA
james@audiosynth.com

Rethinking the
Computer Music
Language: SuperCollider

Computer Music Journal, 26:4, pp. 61–68, Winter 2002
� 2002 Massachusetts Institute of Technology.

Designing a new computer music language requires
one to answer certain questions. Some of these
questions may at first glance seem trivial but on
further examination are rather deep. The following
questions fit this category. What is a computer lan-
guage? What is the difference between a high-level
and a low-level language? What do current com-
puter music languages do for you? What should a
computer music language do? How can computer
language abstractions be applied to computer mu-
sic? Is a specialized computer music language even
necessary? This article discusses the above ques-
tions, how they led to creating the SuperCollider
language, and some current development and fur-
ther directions for SuperCollider.

What Is a Computer Music Language?

A computer language presents an abstract model of
computation that allows one to write a program
without worrying about details that are not rele-
vant to the problem domain of the program. The
greater the power of abstraction of a language, the
more the programmer can focus only on the prob-
lem and less on satisfying the constraints and limi-
tations of the language’s abstractions and the
computer’s hardware. Some of the abstractions
available (roughly in order from less abstract to
more abstract) are listed in Table 1.

The abstractions provided by the Music N lan-
guages, including Csound (www.csounds.com), are
the abstraction of a unit generator, the audio sam-
ple computation loop, the representation

of the connections between unit generators, and
instrument instantiation and de-allocation. These
abstractions make writing signal-processing algo-
rithms easier, because they abstract a number of
cumbersome details. However, the Music N family
provides few control structures, no real data struc-
tures, and no user functions. SAOL (www.saol.net)
improves the Music N paradigm by providing the
kinds of abstractions found in the C language, such
as control structures, functions, and some data
structures. Max (www.cycling74.com/products/
maxmsp.html), which is quite a different kind of
programming language, provides an interesting set
of abstractions that enable many people to use it
without realizing they are programming at all. Max
provides some object-oriented features, including
dynamically typed data, dynamic binding, but no
inheritance, limited data types, but only one data
structure for inter-object messaging and few control
structures. The Max language is also limited in its
ability to treat its own objects as data, which
makes for a static object structure. Later evolutions
of Max, such as jMax (www.ircam.fr/produits/
logiciels/log-forum/jmax-e.html) and Pd
(www.pure-data.org), do various things to expand
the data structure limitations of Max but still have
a generally static object structure.

A computer music language should provide a set
of abstractions that makes expressing composi-
tional and signal processing ideas as easy and direct
as possible. The kinds of ideas one wishes to ex-
press, however, can be quite different and lead to
very different tools. If one is interested in realizing
a score that represents a piece of music as a fixed
artifact, then a traditional orchestra/score model
will suffice. Motivations for the design of Super-
Collider were the ability to realize sound processes
that were different every time they are played, to
write pieces in a way that describes a range of pos-
sibilities rather than a fixed entity, and to facilitate
live improvisation by a composer/performer.

62 Computer Music Journal

Table 1. Some abstractions available in modern computer programming languages

Abstraction Description and Purpose

Variable names Provide human readable names to data addresses
Function names Provide human readable names to function addresses
Control structures Eliminate ‘‘spaghetti’’ code (The ‘‘goto’’ statement is no longer necessary.)
Argument passing Default argument values, keyword specification of arguments, variable length

argument lists, etc.
Data structures Allow conceptual organization of data
Data typing Binds the type of the data to the type of the variable

Static Insures program correctness, sacrificing generality.
Dynamic Greater generality, sacrificing guaranteed correctness.

Inheritance Allows creation of families of related types and easy re-use of common functionality
Message dispatch Providing one name to multiple implementations of the same concept

Single dispatch Dispatching to a function based on the run-time type of one argument
Multiple dispatch Dispatching to a function based on the run-time type of multiple arguments.
Predicate dispatch Dispatching to a function based on run-time state of arguments

Garbage collection Automated memory management
Closures Allow creation, combination, and use of functions as first-class values
Lexical binding Provides access to values in the defining context
Dynamic binding Provides access to values in the calling context (.valueEnvir in SC)
Co-routines Synchronous cooperating processes
Threads Asynchronous processes
Lazy evaluation Allows the order of operations not to be specified. Infinitely long processes and

infinitely large data structures can be specified and used as needed.

Applying Language Abstractions
to Computer Music

The SuperCollider language provides many of the
abstractions listed above. SuperCollider is a dynam-
ically typed, single-inheritance, single-argument
dispatch, garbage-collected, object-oriented lan-
guage similar to Smalltalk (www.smalltalk.org). In
SuperCollider, everything is an object, including
basic types like letters and numbers. Objects in
SuperCollider are organized into classes. The UGen
class provides the abstraction of a unit generator,
and the Synth class represents a group of UGens
operating as a group to generate output. An instru-
ment is constructed functionally. That is, when

one writes a sound-processing function, one is
actually writing a function that creates and con-
nects unit generators. This is different from a pro-
cedural or static object specification of a network
of unit generators. Instrument functions in Super-
Collider can generate the network of unit genera-
tors using the full algorithmic capability of the
language.

For example, the following code can easily gener-
ate multiple versions of a patch by changing the
values of the variables that specify the dimensions
(number of exciters, number of comb delays, num-
ber of allpass delays). In a procedural language like
Csound or a ‘‘wire-up’’ environment like Max, a
different patch would have to be created for differ-
ent values for the dimensions of the patch.

63McCartney

(
{
var exciterFunction, numberOfExciters, numberOfCombs, numberOfAllpass;
var in, predelayed, out;

// changing these parameters changes the dimensions of the patch.
numberOfExciters � 10;
numberOfCombs � 7;
numberOfAllpass � 4;

// a function to generate the input to the reverb,
// a pinging sound.

exciterFunction � { Resonz.ar(Dust.ar(0.2, 50), 200 � rand(3000.0), 0.003) };
// make a mix of exciters
// Mix.arFill fills an array with the results of
// a function and mixes their output.

in � Mix.arFill(numberOfExciters, exciterFunction);
// reverb predelay time :

predelayed � DelayN.ar(in, 0.048);
// a mix of several modulated comb delays in parallel:

out � Mix.arFill(numberOfCombs, {
CombL.ar(predelayed, 0.1, LFNoise1.kr(rand(0.1), 0.04, 0.05), 15)

});
// a parallel stereo chain of allpass delays.
// in each iteration of the do loop the Allpass input is the
// result of the previous iteration.

numberOfAllpass.do({
out � AllpassN.ar(out, 0.050, [rand(0.050), rand(0.050)], 1)

});
// add original sound to reverb and play it:

in � (0.2 * out);
}.play
)

One way of conceiving of a composition is as a
sequence of events. SuperCollider supports this ab-
straction via the concept of a stream. A stream is
an object to which the next message can be sent to
get the next element. A stream ends when it re-
turns nil in response to next. A finite stream is
one that eventually returns nil; an infinite stream
is one that never does. By default, all objects in
SuperCollider respond to next by returning them-
selves, so any object can be used as an infinite
stream of itself. There are also Stream classes that
define operations on streams and Pattern classes

that can create multiple streams from a single spec-
ification.

// a Pattern specifying a stream that
// returns 1, 2, 3, 1, 2, 3, nil
p � Pseq([1, 2, 3], 2);
s � p.asStream;
// create the stream
// from the Pattern s.next;
// get the next value 1 s.next;
// get the next value 2 s.next;

64 Computer Music Journal

// get the next value 3 s.next;
// get the next value 1 s.next;
// get the next value 2 s.next;
// get the next value 3 s.next;
// get the next value nil

SuperCollider defines an event stream as one
that responds to next by returning dictionaries
that map symbols to values. The synthesis instru-
ment looks up the parameters it needs to start an
event from those in the dictionary. Thus, the com-
position code does not need to know anything
about an instrument’s argument list order. Using
dictionaries also means an event may contain any
set of parameters.

p � Pbind(\midinote, Pseq([60, 62, 63],
2), \dur, Pseq([0.5, 0.25], 3));
s � p.asEventStream(Event.new);
s.next;
Event[(dur -� 0.5), (midinote -� 60)]
s.next;
Event[(dur -� 0.25), (midinote -� 62)]
s.next;
Event[(dur -� 0.5), (midinote -� 63)]
s.next;
Event[(dur -� 0.25), (midinote -� 60)]
s.next;
Event[(dur -� 0.5), (midinote -� 62)]
s.next;
Event[(dur -� 0.25), (midinote -� 63)]
s.next;
nil

SuperCollider Server

SuperCollider was originally designed to be a close-
as-possible marriage between a high-level language
and a synthesis engine. SuperCollider version 2
(SC2) represents this approach. However, although
this close coupling has some advantages, it is not
the only approach, and there are a number of rea-
sons to separate a composition language from a
synthesis engine. In the closely coupled architec-
ture, some synthesis processing time must be con-
sumed generating events. If the composition
language were removed from the synthesis engine,

it could run in the background generating events
ahead of time. SuperCollider Server is an architec-
ture that goes in this direction.

In SuperCollider Server, the synthesis engine and
the SuperCollider language engine are separate ap-
plications. They communicate via a slightly modi-
fied version of the Open Sound Control (OSC)
protocol (Wright 1998). This allows users to run
multiple copies of the synthesis engine either on
the same machine (to exploit multiple processors)
or on machines distributed across a network. Con-
trolling the synthesis engine is as simple as open-
ing a socket and sending commands, so any
program (e.g., Max, a Java applet, or a C/C�� pro-
gram) could control it, not just a program written
in the SuperCollider language.

Both the synthesis and language engines are Mac-
intosh OS X command-line applications, with a full
graphical user interface (GUI) version of the lan-
guage engine also available.

Features of the Synthesis Engine

The SuperCollider 3 Synth Sever is a simple but
flexible synthesis engine. While synthesis is run-
ning, new modules can be created, destroyed, and
re-patched, and sample buffers can be created
and reallocated. Effects processes can be created
and patched into a signal flow dynamically at
scheduled times. Patching between modules is
done through global audio and control busses.

All commands are received via TCP or UDP us-
ing a simplified version of Open Sound Control.
The Synth Server and its client(s) may be on the
same machine or across a network. The Synth
Server does not send or receive MIDI; it is expected
that the client will send all control commands. If
MIDI is desired, it is up to the client to receive it
and convert it to appropriate OSC commands for
the synthesis engine.

Synthesis definitions are stored in files generated
by the SuperCollider language application. Unit
generator definitions are Mach-O bundles (not to be
confused with CFBundles). The unit generator ap-
plications programming interface (API) is a simple
C interface.

65McCartney

I have written two versions of the SC Server syn-
thesis engine. One uses a block computation model
and unit generator plug-ins. Instruments are loaded
as files that describe patches of these unit genera-
tors. Another version is implemented as a single-
sample computation model with the instruments
loaded as compiled plug-ins.

Tree of Nodes

All running modules are ordered in a tree of nodes
that define an order of execution. A Node is an ad-
dressable node in a tree of nodes run by the synthe-
sis engine. There are two types of Nodes: Synths
and Groups. The tree defines the order of execution
of all Synths, and all nodes have an integer identi-
fier (ID). A Group is a collection of Nodes repre-
sented as a linked list. A new Node may be added
to the head or tail of the group. The Nodes within
a Group may be controlled together. The Nodes in
a Group may be both Synths and other Groups. At
startup, there is a top-level group with an ID of
zero that defines the root of the tree. A Synth is a
collection of unit generators that run together. They
can be addressed and controlled by commands to
the synthesis engine. They read input and write
output to global audio and control busses. Synths
can have their own local controls that are set via
commands to the server.

Audio and Control Busses

Synths send audio and control signals to each other
via a pair of global arrays of audio and control
busses. Busses are indexed by integers beginning
with zero. Using busses rather than connecting
Synths to each other directly allows Synths to con-
nect themselves to the community of other Synths
without a priori knowledge about them. The
lowest-numbered audio busses get written to the
audio hardware outputs. Immediately following the
audio output busses are the audio input buses,
which are read from the audio hardware inputs.
The number of bus channels defined as inputs and
outputs do not have to match that of the hardware.

Figure 1 illustrates how the tree of nodes and the
buses work together to create a synthesis architec-
ture. Circles represent nodes, and rectangles repre-
sent busses. This tree of nodes is organized in a
way that ensures that execution proceeds in order
starting with control nodes, followed by instru-
ments, effects, and finally a mixer module.

Features of the Block Computation Version

This version includes the control rate and an audio
rate dichotomy like SC2, Csound, and other lan-
guages. As in SC2, all unit generators are imple-
mented so that they always linearly interpolate a
control input whenever not doing so would result
in a discontinuity. The language’s class library can
generate instrument definition files to be loaded by
the synthesis engine.

Features of the Single-Sample
Computation Version

The language’s synthesis class library can generate
C�� code to be loaded by the synthesis engine. It is
not necessary to use the SuperCollider language to
generate synthesis code. The synthesis engine has a
simple C linkage API that allows anyone to write
loadable instruments. The code generator imple-
mented in the class library has several interesting
features, as described below.

Instead of a single control rate, any unit genera-
tor may run at any power of two division of the au-
dio clock rate and is by default automatically
linearly interpolated to the rate of any unit genera-
tor to which it is an input. Only source unit gener-
ators need to specify the computation rate.
Modifier unit generators determine their rates from
their inputs. Unit generators can be easily imple-
mented by overriding a few methods that generate
code, illustrated by the following example of a saw-
tooth oscillator:

LFSaw : UGen {
*new { arg cdiv, freq � 440.0, iphase

� 0.0, mul�1.0, add�0.0;
^this.multiNew(cdiv, freq * (2.0 *

SampleDur(cdiv)), iphase) * mul � add

66 Computer Music Journal

}
decl {
^’’
FLT @phase;

‘‘
}
start {
^’’
@phase � $iphase;
‘‘ �� this.calc

}
calc {

’’
$out � @phase;
FLT nextphase � @phase � $freq;
if (nextphase �� 1.f) nextphase -�

2.f;
else if (nextphase ��±1.f)

nextphase �� 2.f;
@phase � nextphase;
‘‘

}
}

New Features in SC3

Multiple synthesis engines can be supported either
on the same machine or distributed across a net-
work, simply by running multiple copies of the
synthesis engine. This is a simple way to exploit
multiple processors with the additional advantage
of having each process protected from a crash by
the other. Because the language engine and the syn-
thesis engine are separate applications, they are
also protected from each other’s crashing. This
makes live performances safer by providing more
opportunity to recover gracefully from a crash in
the middle of a performance.

Spawning new events is much faster with
SuperCollider Server. Because instruments are
compiled to a single object, the data for all unit
generators can be allocated with a single call to the
allocator. In the single sample version, linking unit
generators together requires no extra work, since
they have been compiled into code. Spawned
Synths can also insert themselves into a graph via
global busses.

Figure 1. The tree of nodes
(circles) executes from left
to right, operating on the
busses (rectangles).

67McCartney

Features Lost from Version 2

Some features of version 2 are lost with this decou-
pled architecture. Because instruments are com-
piled into code, it is not possible to generate
patches programmatically at the time of the event
as one could in SC2. The advantage is that it is
much faster to allocate a new instrument, and CPU
usage levels are more constant, with fewer
‘‘bursts.’’ Users can still design instruments pro-
grammatically in the same way as in version 2;
however, instruments now get compiled.

It is not possible in SC Server to run
composition-level code synchronously in response
to an audio trigger. (Asynchronous triggering is pos-
sible, however.) In SC2, an audio trigger could sus-
pend the signal processing, run some composition
code, and then resume signal processing. In SC
Server, messaging between the engines causes a
certain amount of latency.

Because unit generators get compiled into instru-
ments, they do not exist as objects at synthesis
time. Thus, polling instantaneous values of unit
generators must be handled differently.

Using the Server from the Language

The following example shows how to control the
server directly from the language. Some class li-
braries like the Pattern classes will be able to en-
capsulate management of some of the low-level
interaction with the server illustrated below, mak-
ing it easier to use.

In the example, the server is started, two groups
are created, an instrument definition is created and
loaded, and then 200 randomly generated events
are played.

s � Server.default;
// get the default
// server address s.boot;
// start synth server program s.start;
// start audio running
// we need two groups: one each for

// instruments and effects.
Server.default.sendMsg(‘‘/g_new’’, 1,
0);
// create group 1 (for instruments)
Server.default.sendMsg(‘‘/g_new’’, 2,
0);
// create group 2 (for effects)
// define an instrument
SynthDef(‘‘pulse’’, { arg ioutchan � 0,
freq � 400, gate � 1.0;
var env, out;
// envelope generator
env �
EnvGen.kr(Env.linen(0.01,0.1,0.7,-2),
gate);
FreeSelfWhenDone.kr(env);

// automatically deallocates synth when
// done
// 2 channel pair of pulse waves into a
// pair of filters.
out �
RLPF.ar(Pulse.ar(freq�[0,1],0.2,env),
freq*LinRand(2,16), 0.2);
// mix to the output bus
Out.ar(ioutchan, out)

}).writeDefFile;
// load the instrument
Server.default.sendMsg(‘‘/d_load’’,
‘‘engine/synthdefs/pulse.scsyndef’’)
// scheduling latency (depends on
// hardware and how far ahead you want
// to generate events)
lat � 0.05;
// define a routine to generate events.
r � Routine({
200.do({ arg i;
var dur, freq;
// random duration
dur � [0.15, 0.2, 0.3].choose;
// random frequency
freq � rrand(36, 96).midicps;
// send OSC message to start the event
// at time lat from thread’s current
// time
s.sendBundle(lat, [‘‘/s_new’’,
‘‘pulse’’, 1000�i, 1, ‘freq’, freq]);

68 Computer Music Journal

// send OSC message to release the
// gate of the envelope at time
lat�dur
s.sendBundle(lat�dur, [‘‘/n_set’’,
1000�i, ‘gate’, 0]);
// sleep the thread for the duration
// of the event
dur.wait;

});
});
// play the routine
SystemClock.play(r)

SuperCollider on MacOS X

SuperCollider has been, mostly for historical rea-
sons, a MacOS application from the beginning.
Now that Apple is moving to OS X, work has been
ongoing to port and redesign SuperCollider to take
advantage of the benefits of this new operating sys-
tem. The SuperCollider Server language application
has been rewritten using the Cocoa framework in
Objective-C.

The SuperCollider graphical user interface
classes now support ‘‘drag and drop’’ of any
SuperCollider object. This will, I think, lead to an
easy way for non-programmers to use SuperCollider
by using the ‘‘drag and drop’’ paradigm to make
connections between pre-built modules. All objects
can have inspectors opened for them, and their in-
ternal structure and the structure of the entire sys-
tem can be traced by clicking along, following
links.

Another version of SuperCollider, called version
3, had a newly rewritten unit generator class li-
brary and a dual language engine architecture, with
one engine running the graphical user interface and
another running the synthesis code. This architec-
ture presented a number of difficult problems in-

volving sharing data between two garbage-collected
virtual machines running in different threads.

Conclusion

Is a specialized computer music language even nec-
essary? In theory at least, I think not. The set of ab-
stractions available in computer languages today
are sufficient to build frameworks for conveniently
expressing computer music. Unfortunately, in prac-
tice, some pieces are missing in the implementa-
tions of languages available today. Often, the
garbage collection is not performed in real time,
and often argument passing is not very flexible. If
lazy evaluation is not included, then implementing
Patterns and Streams becomes more complicated. I
wrote SuperCollider to have the set of abstractions
that I wanted for computer music to have some-
thing flexible to use. In the future, other languages
may be more appropriate.

One goal of separating the synthesis engine and
the language in SC Server is to make it possible to
explore implementing in other languages the con-
cepts expressed in the SuperCollider language and
class library. Some other languages that I think
may have interesting potential in the future for
computer music are OCaml (www.ocaml.org),
Dylan (www.gwydiondylan.org), GOO (www.
googoogaga.org), and also possibly Ruby (www.
ruby-lang.org), a scripting language which coinci-
dentally shares many syntactic and semantic attri-
butes with the SuperCollider language.

References

Wright, M. 1998. ‘‘Implementation and Performance Is-
sues with Open Sound Control.’’ Proceedings of the
1998 International Computer Music Conference. San
Francisco: International Computer Music Association,
pp. 224–227.

