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Abstract—Compact spherical loudspeaker arrays are nowa-
days investigated as sources for directional measurementsand
audio playback. Their microphone-based calibration is nottrivial
as it requires an elaborate measurement setup of highly accu-
rate geometry. This contribution shows how measurements of
accurate geometric alignment were obtained to the authors’best
knowledge, and systematically discusses how possible inaccura-
cies affect the resulting spherical harmonic radiation patterns.
Eventually, a method is developed to estimate geometric errors
from the measured responses. This geometry estimation is verified
by tests with intentional errors. Finally, results are successfully
employed to make calibration measurements more robust against
geometric errors of the setup. This is done by both time
realignment of the responses compensating for radial errors and
the correction of the angles in the spherical harmonic transform.

I. I NTRODUCTION

Dodecahedral loudspeakers are common measurement tools
in room acoustics due to their nearly omnidirectional sound
radiation. The idea behind these arrays was to have a stan-
dardized source for measuring room acoustic parameters. As,
however, a human speaker or musical instrument do not radiate
omnidirectionally, researchers have been considering acoustic
sources with variable radiation patterns adjusted to fit any
target, [1], [2], [3], [4]. This was shown to improve the
accuracy of quality measures for speech intelligibility orthe
clarity of music reproduction, cf. [5].

The radiation and control of compact spherical loudspeaker
arrays is usually described in terms of spherical harmonics,
which form basis functions similar to that of the Fourier
series, but depend on the zenithϑ and azimuthϕ angles.
They appear in the solution of the Helmholtz equation of
spherical boundary value problems and therefore provide well-
described means for acoustic holophony, the synthesis of
controlled sound radiation [6]. The sound pressure of any
acoustic radiator with limited ordern ≤ N is

p(kr,θ) =

N
∑

n=0

n
∑

m=−n

ψnm
hn(kr)

hn(krM)
Y m

n (θ), (1)

wherein θ(ϕ, ϑ) = [cosϕ sinϑ, sinϕ sinϑ, cosϑ]T is a
normalized direction vector depending on the zenithϑ and
azimuthϕ, k is the wave number,n andm are order and
degree of the spherical harmonicY m

n (θ), respectively,hn(kr)

is the spherical Hankel function of the second kind,ψnm are
the spherical harmonic coefficients describing the directivity
pattern at the radiusrM, and i2 = −1; cf. [7]. At the ideal
radiusr = rM, the radiation produced remains to be a spherical
harmonics expansion

p(θ) =

N
∑

n=0

n
∑

m=−n

ψnm Y m
n (θ) (2)

which is determined by the spherical spectral coefficientsψnm.
Radiation synthesis aims to produce arbitrary radiation as

specified by Eq. (2). Calibration is done by measuring the
directivity patternsp(l)(θ

(i)
mic) of all l = 1, . . . ,L loudspeakers

with i = 1 . . .M microphones at uniformly surrounding direc-
tions θ

(i)
mic on a constant radiusrM. The spherical harmonic

coefficientsψ(l)
nm are obtained by the least squares solution of

M simultaneous Eqs. (2) [8], i.e.

p(l) = Ymicψ
(l) =⇒ ψ(l) = (Y T

micYmic)
−1Y T

mic p
(l), (3)

using the vectorsp(l) := [p(l)(θ
(i)
mic)]i andψ(l) := [ψ

(l)
nm]nm

and the matrixYmic = [Y m
n (θ

(i)
mic)]

nm
i .

The task in radiation control is to design a frequency-
dependent matrixG(ω) of which each column contains
complex “gains” to produce one spherical harmonic [8]
by superimposing the loudspeakers’ directivitiesΨ(ω) =
[ψ(1)(ω), . . . , ψ(L)(ω)] so that

Ψ(ω)G(ω) = I. (4)

A desired spherical directivityψ is synthesized by the gains
G(ω)ψ.

Driving the array through a decoderDls = Yls (Y T
ls Yls )−1

is advantageous and yields a tentative, frequency independent
control. A modified control system̃G(ω) is then employed to
perfect the rough synthesis ofDls

Ψ(ω)DlsG̃(ω) = I. (5)

This formulation usually yields a sparse matrix̃G(ω), whose
implementation is more efficient than the one ofG(ω), cf. [9].
Its simplified role after the rough synthesis usingDls is to
accomplish frequency independence of all synthesized spher-
ical harmonics and to remove all spherical harmonics that are



erroneously synthesized due to acoustic crosstalk. A synthesis
of ψ is obtained by the gainsDlsG̃(ω)ψ.

It is clear that when the microphone-based directivity cal-
ibration is inaccurate, then the control system̃G(ω) will
try to produce correct patterns using wrong data. This not
only brings additional complexity into the control system
and counteracts efficient implementations but also destroys
radial directivity focusing. Hence accurate measurementsare
paramount in the design of the control system. The most
important source of errors is geometric: loudspeaker arrayor
microphones that are misplaced by just a few centimeters can
render measurement data useless for control.

The present paper focuses on such geometric errors, their
estimation, and the minimization of their impact. After de-
scribing a real measurement scenario and possible geometric
deficiencies, the effects of geometric errors are systematically
discussed. Then, the acoustic delay from a spherical loud-
speaker array to a measurement point is modeled acoustically,
and shown to produce the results of a geometric model after
minimum phase removal. Based on this model, we present, to
our knowledge, the first method for estimating such measure-
ment geometry errors. The estimates are applicable to check
the accuracy of the geometry and to successfully diminish
geometry-induced errors prior to radiation control design.

II. M EASUREMENT OF SPHERICAL LOUDSPEAKER ARRAYS

We have performed impulse response measurements on the
available arrays of IEM, one for the low- (with radiusR =
28.5 cm usingL = 20 loudspeaker elements, Fig. 1(a)) and the
other one designed for the mid-frequency range (R = 8.5 cm,
L = 16, Fig. 1(b)).

Each loudspeaker array was mounted on a turntable, while
the radiated measurement signal was recorded with a semicir-
cular arc of18 microphones at a radiusr = 0.7m covering
all zenith angles in10◦ steps. The turntable permits repeated
measurement in 10◦ azimuthal steps in order to sequentially
gather impulse responses measured by a virtual spherical
microphone array with18 × 36 = 648 positions in zenith
and azimuth in total. Ideal positionsXmic of the virtual array
are defined by sequentially applying rotationsRz aroundz on
the coordinatesXarc of the semicircle

Xmic = [Rz(0
◦)Xarc, Rz(10◦)Xarc, . . . , Rz(350◦)Xarc],

Xarc = 0.7m





cos(5◦) cos(15◦) . . . cos(175◦)
0 0 . . . 0

sin(5◦) sin(15◦) . . . sin(175◦)



 , (6)

Rz(ϕ) :=





cos(ϕ) − sin(ϕ) 0
sin(ϕ) cos(ϕ) 0

0 0 1



 . (7)

A. Geometric errors

The array geometries of the semicircular array and the loud-
speaker arrays and the incremental rotation of the turntable are
highly accurate compared to errors appearing in the relative
positioning of both arrays. Generally, a vectorx transforms to

x′ = R(r)x+ d, (8)

(a) low-frequency array (b) mid-frequency array

y

x

z

ls

ls

arc
ls

arc

(c) measurement setup

Fig. 1. Low and mid frequency spherical loudspeaker arrays a), b) that were
measured using the microphone array setup in c).

under the displacementd = [∆x, ∆y, ∆z]T and rotation

R(r) := RT
zy(ϕ, ϑ)Rz (r) Rzy(ϕ, ϑ), (9)

Rzy(ϕ, ϑ) := Rz(ϕ)





cos(ϑ) 0 − sin(ϑ)
0 1 0

sin(ϑ) 0 cos(ϑ)



 , (10)

with the rotationr parametrized in spherical coordinates:r
measures the rotation angle and the rotation axis is oriented
towardsθ(ϕ, ϑ) = [cosϕ sinϑ, sinϕ sinϑ, cosϑ]T, cf. [10].

The spherical loudspeaker array could be shifted with re-
spect to all three coordinate axes bydls = [∆xls,∆yls,∆zls],
and rotated byrls.

The semicircular microphone array could be shifted on the
horizontal planedarc = [∆xarc,∆yarc, 0] and rotated around
axis on the horizontal planerarc = rarc [cosϕarc, sinϕarc, 0].
This covers misalignments of the semicircle axis from the
turntable axis and may cause deviations of the virtual micro-
phone array from spherical.

A misplaced semicircular microphone array yields absolute
positionsXmic,A from Xarc, Eq. (6). The more convenient
relative positionsXmic are obtained by including the inverse



loudspeaker misplacement

Xmic = R(rls)
T

[

Xmic,A − dls

[

1 . . . 1
]]

,

Xmic,A = [Rz(0
◦)X ′

arc, Rz(10◦)X ′

arc, . . . , Rz(350◦)X ′

arc],

X ′

arc = Rz(rarc) Xarc + darc

[

1 . . . 1
]

. (11)

Each column ofXmic corresponds to a microphone mea-
surement positionx(i)

mic. Geometric errors cause a deviation
from the ideal radius‖x(i)

mic‖ 6= rM in Eqs. (1) and the ideal
directionsx(i)

mic/‖x
(i)
mic‖ 6= θ

(i)
mic in Eq. (3).

B. Achievable physical alignment

For positioning the loudspeaker and turntable the following
procedure was used: a piece of paper with anxy scale was
placed on the top of the loudspeaker at its center. At the
0◦ rotation of the turntable, speaker was aligned such that
the plumb line hanging from the semicircle microphone array
showedx0◦ = y0◦ = 0 on the xy scale. How much the
turntable is eccentric to the plumb line was found after a
turntable rotation of 180◦, showingx180◦ = −2∆xarc and
y180◦ = −2∆yarc on the paper scale. Therefore, centering
for both loudspeaker and turntable is obtained by shifting
both with −x180/2 and −y180/2. To become accurate, the
procedure was repeated until the paper scales showed centering
errors of only 1. . . 2 mm. The height of the loudspeaker was
adjusted by the help of a laser pointer, and here the precision
is more about in the range of 0.5cm.

III. T HE EFFECT OF GEOMETRIC ERRORS

Since the control of spherical loudspeaker arrays is usually
done in terms of spherical harmonics, it is reasonable to
examine how the different geometric errors affect the spherical
harmonic transform of Eq. (3). If no geometric errors are
present, then driving then,m spherical harmonic of the ideal
source exclusively yields then′ = n,m′ = m component
in ψn′m′ = δmm′

nn′ according to Eq. (3). By contrast, misalign-
ments in the measurement setup cause an apparent “crosstalk”:
an ideal source radiating one spherical harmonicY m

n seems
to produce also other componentsn′ 6= n, m′ 6= m in the
analysis of the virtual spherical microphone array. This is
because ideal angular and radial locations used for the analysis
deviate from the real ones.

In general, angular errors result in an apparent frequency-
independent crosstalk between the spherical harmonics
through samplingY m

n (θ) at wrong angles. On the other hand,
radial (distance) errors result in a frequency-dependent error
due to the fact that all the microphone signals are delayed by
different amount, which cause phase cancellations when the
signals are summed during the spherical harmonic transform.
Since the same time delays lead to larger phase differences at
high frequencies, distance errors are increasing as a function
of frequency.

A. Displacement of the source

If an ideal source is shifted by∆xls, ∆yls, or ∆zls this will
cause both distance and angle errors between the source and
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(a) 3 cm shift alongx
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(b) 3◦ rotation aroundx
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(c) 3 cm shift alongy
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(d) 3◦ rotation aroundy
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(e) 3 cm shift alongz
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(f) 3◦ rotation aroundz

Fig. 2. Spherical harmonic crosstalk in idealized measurement at1 kHz due
to misaligned source in dB. The source is shifted by3 cm alongx, y, or z and
rotated by3◦ aroundx, y, or z. The indices on thex andy axes correspond
to a linear indexq = n

2 + n + m + 1 used for the spherical harmonics.

observation at the microphone positions. While these errors
are generally frequency dependent, here only one frequency
(1 kHz) is analyzed. The virtual speaker is an ideal spherical
harmonic source described by Eq. (1), whose sound is picked
up by a virtual array of microphones with positions that
comply with our measurement setup (Sec. II). The simulated
microphone signals are encoded to spherical harmonics by
Eq. (3). Figure 2 (a), (c), and (e) show how much signal all
of the 16 spherical harmonics of the simulated microphone
measurement receive when there is a shift alongx, y, or z of
the source. Theqth column in each Figure corresponds to an
ideal source that radiates one spherical harmonic indexed by
q = n2 +n+m+ 1. Ideally, the crosstalk matrix should only
contain diagonal elements (nonwhite in the Figures).

Plain rotational errors of the source orientation yield a fre-
quency independent leakage between the spherical harmonics
as it is displayed in Fig. 2 (b), (d), and (f) for a3◦ rotation
around thex, y, and z axis, respectively. The crosstalk for
rotation can only occur between the spherical harmonics of
the same order.
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(b) 3◦ rotation aroundx
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(c) 3 cm shift alongy
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(d) 3◦ rotation aroundy

Fig. 3. Spherical harmonic crosstalk in idealized measurement at1 kHz due
to misaligned measurement array. The rotation axis is shifted by3 cm along
x or y, or rotated by3◦ degrees aroundx or y.

B. Displacement of the measurement array

If the semicircular microphone array is misplaced by∆xarc

with regard to the turntable axis, this causes a somewhat
ellipsoidal distortion of the virtual microphone array such that
its horizontal radius is larger than its vertical one. This mostly
yields radial errors for the microphones around the horizontal
plane and angular errors for microphones at the top or bottom
of the sphere. In between, both effects take place. The crosstalk
at 1 kHz is displayed in Fig. 3 (a) for∆xarc = 3 cm.

If the semicircular microphone array is misplaced by∆yarc,
this will mostly resemble a rotation of the virtual spherical
microphone around thez-axis. Since there is little distance
error, the crosstalk is largely frequency-independent. Fig. 3
(c) displays the crosstalk between spherical harmonics for
∆yarc = 3 cm. A displacement of the semicircular array
towardsz is equivalent to the opposite displacement of the
source, which was discussed in Sec. III-A.

If the semicircular array is rotated around they axis,
this is equivalent to shifting the microphone positions with
respect to the zenith angle. Therefore, this results in frequency
independent angular distortion errors, however with possible
crosstalk between the orders. This is shown in Fig. 3 (d).
Rotations aroundx are shown in (b) and are mostly frequency
independent, and again with crosstalk between spherical har-
monics of different order.

IV. M ODELING THE DELAY OF ACOUSTICAL

MEASUREMENTS

The following models use the notationR for the radius of
the loudspeaker array, andr for the radius of an observation
point. Loudspeaker positionsx(l)

ls enclose polar anglesϑ =

arccos < x
(l)
ls /R,x

(i)
mic/r > with microphone positionsx(i)

mic.

A. Acoustic model

The most accurate model of the acoustic delay is the
analytic model of sound radiation from a spherical loudspeaker
[2], [11]. Fig. 4(a) shows a cross-section of the rotationally
symmetric analytic model of a vibrating cap. The normal
velocity on the sphere is a unit step functionu(·) in the polar
angle

vr|R(ϑ) = u
(α

2
− ϑ

)

=

∞
∑

n=0

νn Pn(cosϑ), (12)

with νn =

{

1 − cos α
2 , n = 0,

2n+1
2 (n+1) [Pn−1(cos α

2 ) − cos α
2Pn(cos α

2 )], else

and Pn are the Legendre polynomials, which are angular
solutions to rotationally symmetric wave fields [7]. The sound
pressure involves spherical Hankel functions and their deriva-
tives, the air densityρ, and speed of soundc

p(kr, ϑ) =
ρc

i

∞
∑

n=0

νn
hn(kr)

h′n(kR)
Pn(cosϑ). (13)

From this, the group delay can be estimated at any point in
space.

B. Geometric model

The geometric model describes the shortest diffraction path
from one point on a rigid sphere to a point in space, cf.
Fig. 4(b). It has two cases

τ̂(ϑ) =
1

c

{√
r2 + R2 − 2rR cosϑ, r cosϑ− R ≤ 0√
r2 − R2 + (ϑ− arccos R

r )R, else.
(14)

A comparison between the frequency independent geometric
model Eq. (14) and the acoustical group delay computed from
Eq. (13) is plotted in Fig. 5, modeling the mid-frequency array
at various angles. It turns out that the acoustical cap modeland
the geometric model give a perfect match in the estimated
group delay when the minimum phase component is removed
from the acoustically modeled transfer function (cf. dotted grid
lines and dashed lines in Fig. 5).

vr|R = 1

α/2

vr|R = 0 p(r, ϑ)
ϑ

r

(a) Cap model

ϑ

r

R

√
r2 − R2

(ϑ− arccos R
r ) R

arccos R
r

√
r2 − R2

√

r2 + R2 − 2rR cos(ϑ)

(b) Geom. distance model

Fig. 4. Cap model of sound radiation from spherical loudspeaker and
geometric model of acoustic time delays.
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Fig. 5. Comparison of geometric delays (dotted grid lines) and the
acoustically modelled group delay with (solid) and withoutthe minimum
phase component (dashed) for different angles, and the model of the mid
frequency spherical loudspeaker array.

V. ESTIMATION OF GEOMETRIC ERRORS

Geometric errors can be estimated by comparing the mod-
eled and measured delays between all loudspeaker elements
and microphones.

A. Time-delay estimation

As we have seen in Secs. IV-A and IV-B, the transfer
function from a cap on the sphere to a point in space can be
described by a minimum phase transfer function and a delay
Hrad(ω)e−iωτ . The transfer function of a loudspeakerHls(ω)
and a microphoneHmic(ω) are usually minimum phase. The
whole signal path is

H(ω) = Hls(ω)Hmic(ω)Hrad(ω)e−iωτ = Hmph(ω) e−iωτ ,
(15)

where Hmph(ω) is the minimum phase version ofH(ω)
obtained by replacing its phase with the Hilbert transform of
the log-magnitudeln |H(ω)|.

Accordingly, the delay of a particular measurement channel
(i, l) is calculated by first removing the minimum phase part

H
(i,l)
nonmph(ω) =

H(i,l)(ω)

H
(i,l)
mph(ω)

. (16)

Then,H(i,l)
nonmph(ω) is converted to the time-domain by inverse

the Fourier transformh(i,l)
nonmph(t) = IFT{H(i,l)

nonmph(ω)}. The
delay is found as its peak

τ (i,l) = argmax
t

h
(i,l)
nonmph(t). (17)

In practice, this is done by IFFT, and the discrete-time signals
are upsampled by a factor of 256 prior to peak finding to
provide fractional-sample accuracy.

TABLE I
GEOMETRIC ERRORS DETECTED IN THREE MEASUREMENTS

sph. array meas. 1 meas. 2 meas. 3

dls in cm 0.2, 0.1,-0.3 0.1, 0.3,-0.4 0.2, 0.1,-0.3

rls in ◦ -1.1,-1.2, 1.1 -0.6, 0.0,6.0 -1.3,-1.4,-0.4

darc in cm 0.9, 0.7 0.3, 0.9 2.8,-1.3

rarc in ◦ 0.8,-0.5 0.3, 0.9 0.7,-0.7

B. Geometry estimation with modeled and measured delays

Rotation and displacement dependent positions of measure-
ment microphones have been modeled in Eq. (11) and they
can be employed in Eq. (14) to model time delaysτ̂ (i,l)

between loudspeakers and microphones. However, rotations
and displacements are unknown. Moreover, Eq. (17) has been
used to determine time delays from measurements.

The MATLAB Optimization Toolbox functionlsqnonlin
was used to retrieve the displacements (dls, darc) and rotations
(rls, rarc) that are involved in̂τ by minimizing the mismatch
τ̂ (i,l) − τ (i,l) between model and measurement. The optimizer
also retrieved the initial delayτ0 we removed from all impulse
response data in common. Delays get inaccurate when the
speaker element is on the other side of the sphere, so the mis-
match was weighted byw(i,l) = cos[min(ϑ(i,l) 180◦

150◦
/2, π/2)]

before minimizing its squared sum

min
∑

i,l

w(i,l)(τ̂ (i,l) − τ (i,l) − τ0)
2. (18)

The standard deviation of the unweighted mismatch achieves
0.4 mm for the36 × 18 × L paths after optimization.

C. Examples

Table I shows examples that have been evaluated out of
selected measurement series done in August 2011 both with
the low- and mid-range loudspeaker arrays. Meas. 1 shows
the results for an unmodified geometric setup for the mid-
range array. The estimated total rotation stays below2◦ and
the displacement stays below1 cm. Meas. 2 was done with
the icosahedral array which has been rotated on purpose by
5◦ aroundz compared to Meas. 1, leading to an estimated
rotation of6◦. Meas. 3 was done with a shifted rotation axis
by ∆xarc ≈ 2 cm and∆yarc ≈ −2 cm compared to meas. 1,
and indeed,darc of meas. 3 differs from that of meas. 1 by
1.9 and -2 cm.

The table indicates that the method yields fairly accurate
results with only one or two millimeters of uncertainty for
different tests. It is also obvious that the modified parameters
are indicated with a quality that is reasonable for monitoring
the geometric accuracy.

VI. ERROR COMPENSATION IN MEASURED RESPONSES

Once the geometric errors are estimated, they can be used in
order to correctly interpret the measured responses. The most
significant effect of the geometric errors of the measurement
setup is that all the microphone signals are delayed differently.
A delay compensation is achieved in the frequency domain
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Fig. 6. Measurement of the spherical harmonic responses of the mid-
frequency array. The loudspeaker array is displaced by∆xls = 2 cm. The
first spherical harmonic is excited. The thick line is the response of the first
spherical harmonic, the thin lines are harmonics 2-16 whichshould be zero.
In comparison to the uncompensated case (a), the results with geometric error
compensation in (b) show significantly less crosstalk.

by applying the compensationei(ω/c)(r(i)
−rM). Moreover, the

estimated microphone positions have to be used as corrected
directionsθ(i)

mic = x
(i)
mic/r

(i) of the spherical harmonics trans-
form applied in Eq. (3).

Figure 6 displays the spherical harmonic transfer functions
of the mid-range loudspeaker array with a∆xls = 2 cm
displacement. A rough reproduction of spherical harmonic
patterns is achieved by superimposing the measured directiv-
ities by decoding usingDls (see Sec. I). In Fig. 6 the first
(monopole) harmonic is excited through the decoder. As seen
in Fig. 7 (a), which assumes an ideal measurement geometry
to calculateΨ(ω), not only the first harmonic (thick line)
appears at the output, but also the higher spherical harmonics
(thin lines). However, when a delay compensation is appliedto
the microphone signals prior to corrected spherical harmonic
decomposition (b), the crosstalk significantly decreases,show-
ing that a large part of the crosstalk was coming from the
imperfection of the measurement geometry and not from the
loudspeaker array itself. It is clear that when a control system
G̃(ω) were designed based on the uncorrected measurement
of Fig. 6 (a), it would try to correct heavy apparent crosstalk,
which would actually worsen the radiation pattern in reality,
instead of improving it. Therefore, validating and, if necessary,
correcting the radiation measurements of spherical loudspeaker
arrays seems to be vital for radiation control.

VII. C ONCLUSION

The radiation pattern of compact spherical loudspeaker ar-
rays is in general controlled based on radiation measurements

of the speaker elements. Thus, any error in the measurements
will result in a suboptimal control system and an erroneous
radiation pattern. In this paper we have demonstrated that geo-
metric measurement errors can introduce significant apparent
spherical harmonic crosstalk, even for small misalignments.

We have shown that acoustic delay information can be
modeled by a simple geometric model after the non-minimum
phase part of the transfer function is removed. Based on this
geometric model, an optimization procedure was successfully
employed to estimate geometric errors with an accuracy in the
range of a millimeter. The geometric estimates were validated
by running the optimizer on various data sets where different
geometric errors were introduced intentionally.

Moreover, the estimated geometric errors are applied to
obtain a substantially corrected interpretation of the mea-
surement data by delay compensation and corrected spherical
harmonic transform. More elaborate corrections could take
frequency dependent magnitude correction of near field into
account in the future, especially for higher order radiation
components. Future work also includes applying our method
for the measurement of spherical microphone arrays.
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