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Abstract: The engine sound power is a typical benchmark of combustion engines for vehicles, as it delivers a rough
over-all estimation of how loud an engine could be when built into a car. The grade 1 procedure for simultaneous sound
power measurement considers 20 microphone positions around the engine in an anechoic room, and an engineering (grade
2) procedure typically employs five measurement positions at one meter distance from the engine surface in a semi-anechoic
room. In all cases, far-field conditions are considered.
In this study, we compare uncertainties of typical and spherical-harmonics-based estimation procedures of the sound power
using different measurement grid positions. To accomplish this, we take simulated engine data (AVL Excite) as a reliable
ground-truth. This allows us to illustrate uncertainties related to the measurement grid and the systematic effect of acoustic
near fields at low frequencies. We discuss alternative sampling and computation schemes.
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1. INTRODUCTION

The norm [1] proposes several grade 1 methods for sound
power measurement. In one of them, simultaneous measure-
ments in an anechoic room are specified on a grid of M = 20
(if necessary 40) points on a sphere. The spherical grid is
proposed with the idea of providing equal area coverage.
Moreover, far field conditions are assumed to be met when
the radius R of the measurement grid is at least a fourth wave
length, one meter, and twice the largest source diameter. At
one frequency, the underlying estimation of sound power
then simply relates to

Π̂ =
1

2

1

ρc

4πR2

M

M∑
i=1

|pi|2. (1)

The norm text displays the equation in a somewhat different
look, as values are in dB and several constants, corrections,
and normalizations are gathered into simplified expressions.

Essentially, the estimation above derives from the analytic
definition of the sound power

Π =
1

2

∮
S

<{pv∗} · dS. (2)
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In the free field, the particle velocity far away from the
source is aligned with the outward normal and related to
sound pressure by the free-field impedance v = p

ρc :

Π =
1

2

1

ρc

∮
S

|p|2 dS. (3)

Eq. (1) is the discretized version of this far-field integral
using the average surface element 4πR2

M .

Assuming perfectly calibrated and placed microphones in a
perfect measurement room, the alert reader has noticed two
sources of estimation uncertainty:

- the far field assumption,

- the spatial discretization of the integral.

Clearly, practical measurement will probably always be ac-
cessible only through spatially discrete microphone place-
ment. And some pre-assumptions about sound radiation
might always be necessary.

This contribution discusses uncertainties related to different
sound power measurement setups using a simulated car en-
gine. The simulation allows us to vary the discretization of



the integral, from the spiral-type sampling proposed in the
norm to alternative sampling schemes. Beside the discussion
of the effect of sampling, we discuss a strategy to avoid the
typical over-estimation of the sound power at low frequen-
cies due to the typical violation of the far field assumption.

2. SIMULATED ENGINE AS TEST OBJECT FOR
SOUND POWER

This study uses a simulated engine data obtained from the
AVL Excite3 environment. Sound pressure emitted by the
simulated engine can be evaluated on a fine grid as shown
in Figure 1. We obtain the wave spectrum cnm(k) of the
engine at every wave number k = ω/c, which allows us to
evaluate sound pressure at any spherical coordinate r, ϕ, ϑ

p =

∞∑
n=0

n∑
m=−n

cnm(k)hn(kr)Y mn (ϕ, ϑ), (4)

using the spherical Hankel functions hn(kr) of the second
kind, and the spherical harmonics Y mn (ϕ, ϑ).

From the above equation, an accurate ground-truth formula-
tion of the sound power is defined as

Π =
1

2

∑
n,m

<
{

R2hn(kR)

[
−i

ρ c
h′n(kR)

]∗}
|cnm(k)|2

=
1

2

1

ρ c

1

k2

∑
n,m

|cnm(k)|2. (5)

Octave-band averaged sound power levels referenced to
10−12 W at different engine speeds are shown in Figure 1.

3. SOUND POWER ESTIMATION USING ISO 3745

Obviously, the orientation of the measurement grid relative
to the source does not change the radiated power. However,
the estimated sound power might vary for different relative
orientations. As the relative orientation is arbitrary, we pro-
pose to use this variation to quantify the uncertainty caused
by the measurement grid.

Using J uniformly distributed random rotations of a unit
sphere, see [4, p. 117], a set of sound power estimations
{Π̂1, . . . Π̂j , . . . Π̂J} is achieved by applying the random
rotations to the measurement grid. The deviation from
the ground-truth value in dB is calculated by ∆Lw,j =

10 log10(Π)− 10 log10(Π̂j).

ISO 3745 20 point grid

In accordance with the norm, we choose R = 1.4m for a
lowest frequency of interest of about 60Hz. Using the 20
point grid proposed in the norm, see [1, Table C.1] a set of
J = 1000 randomly rotated realization was generated and
used for the following statistical analyses, see Figure 2.

3http://www.avl.com/web/ast/excite

(a) Simulated engine in AVL Excite

31.5 63 125 250 500 1k 2k 4k
40

60

80

100

120

f / Hz

L
w
/
d
B

1000 rpm 2000 rpm 3000 rpm 4000 rpm

(b) Ground truth octave sound power level

Fig. 1: Engine simulated in AVL Excite.

(a) 20 measurement grid from ISO 3745 [1]

(b) 20 equal area partitioning points [2]

(c) 16 maximum determinant points [3]

Fig. 2: Sampling schemes.
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(a) 1000 rpm
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(b) 2000 rpm
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(c) 3000 rpm
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(d) 4000 rpm

Fig. 3: Uncertainty of the ISO 3745 20 point grid, octave
band average, (a) 1000 rpm, (b) 2000 rpm, (c) 3000 rpm, (d)
4000 rpm.
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(a) 1000 rpm
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(b) 2000 rpm
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(c) 3000 rpm
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(d) 4000 rpm

Fig. 4: Uncertainty of the equal area partitioning 20 point
grid, octave band average, (a) 1000 rpm, (b) 2000 rpm, (c)
3000 rpm, (d) 4000 rpm.



Figure 3 shows an increased statistical spread at high fre-
quencies as the increasingly complex radiation patterns of
the engine are not measured densely enough. Less spread is
only achieved by denser spatial measurement grids.

At low frequencies, near fields cause a systematic over-
estimation of the sound power level. This is because near
field components decay more steeply than by 1

r , which, how-
ever is assumed for the far field estimator.

Aside from the systematic error, the decreasing complexity
of the engine radiation pattern should yield a vanishing sta-
tistical uncertainty at low frequencies. As this is not the case,
we could expect that the low-frequency uncertainty is caused
by a deficiency of the measurement grid.

4. EQUAL AREA SPHERE PARTITIONING

Assuming a sound source whose low-frequency directivity
is of strictly limited complexity, suitable spherical sampling
schemes allow to estimate perfectly accurate results [5, 6].

As this is in contrast to results in Figure 3, it is reasonable to
test alternative measurement grids that are designed to uni-
formly cover the sphere. The equal area sphere partitioning
scheme [2], cf. Figure. 2, seems to be a good candidate, as it
divides the spherical surface into equally large, spherically
rectangular areas. Hereby, it might better fulfill the design
goal for measurement grids as formulated in [1].

Figure 4 shows less uncertainty using a 20pts equal spherical
area partitioning scheme at low frequencies when compared
to Fig. 3. Still, there is the systematic over-estimation due to
near field components.

5. NEAR-FIELD-INVOLVING ESTIMATOR

If we had a spherical harmonics expanded sound pressure
ψnm at r = R, we would obtain a sound power estimate

Π =
1

2

1

ρ c

1

k2

∑
n,m

|ψnm|2

|hn(kR)|2
(6)

through cnm = ψnm

hn(kR) that takes near field components into
account, which appear for higher than zeroth order.

How to get the pressure expansion coefficient ψnm?

Using a well-distributed measurement grid, the sound pres-
sure samples p = [p(ϕi, ϑi)]i=1...M can be expanded in the
spherical harmonics domain p =

∑
n,m ψnmY

m
n (ϕ, ϑ) by

the unknown coefficients ψnm. To find the coefficients, the
sampled spherical harmonics up to the orders 0 ≤ n ≤ N

are written into a matrix YN = [Y mn (ϕi, ϑi)]
n=0...N,|m|≤n
i=1...M ,

as well as the coefficients ψN = [ψnm]n=0...N,|m|≤n. The
best fitting pN = YNψN estimate is then obtained by

ψ̂N =
(
Y T
N YN

)−1
Y T
N p. (7)

To enable inversion, the sampling grid must contain at least
M ≥ (N + 1)2 measurement positions that provide a condi-
tion number of YN, [5]. Inversion is ill-conditioned with the
norm grid.

Figure 5 clearly shows that the tendency to over-estimate
low-frequency sound power has vanished entirely when us-
ing the Eqs. (6)(7). Nevertheless, under-estimation appears
to affect the sound power estimate above the 250 Hz octave.

6. MINIMUM DETERMINANT POINTS

The typical summation formula Eq. (1) already yields quite
accurate results for the equal area partitioning grid at high
frequencies, cf. Figure 4. Consequently, near fields cannot
cause under-estimation above the 250 Hz octave in Figure 5.
For this reason, the under-estimation can only be caused by
the decomposition of the sound pressure into spherical har-
monics. Note that the estimation should simplify to Eq. (3)
in the far field, because limkR→∞ |hn(kR)|2 = (kR)−2

Π =
1

2

1

ρ c

∑
n,m

R2|ψnm|2 =
1

2

1

ρ c

∮
S2
|p|R2dϕd cosϑ.

The squared sum of |ψnm|2 and integration over |p|2 is the-
oretically equal due to Parseval’s theorem (unit sphere S2),∑
nm |ψnm|2 =

∮
S2 |p|

2 dϕd cosϑ. Practically, however,
we see a difference between far-field estimators with the
discretized spherical harmonics transformation and without:

pH YN

(
Y T
N YN

)−2
Y T
N p

2ρ c
R2 vs.

pHp

2ρ c

4π

M
R2. (8)

For a well-distributed grid such as the equal area parti-
tions, non-zero eigenvalues of YN

(
Y T
N YN

)−2
Y T
N would

all roughly equal an average unit-sphere surface element 4π
M .

Whenever the number of sampling points exceeds the num-
ber of expansion coefficients M > (N + 1)2, the M ×M
matrix gets rank deficient and has only (N + 1)2 non-zero
eigenvalues roughly being 4π

M . Components of the pressure
pmapping to the zero eigenvalues will get lost. Such compo-
nents emerge in the frequency range above 250 Hz, in which
the engine radiation pattern gets increasingly complicated.

We conclude that a sampling scheme with M = (N+1)2 is fa-
vorable to avoid this under-estimation effect. Maximum de-
terminant points [3], cf. Figure 2, allow for well-conditioned
spherical harmonics decomposition with M = (N + 1)2.

Figure 6 shows the estimated sound power level for the
N = 3 maximum determinant measurement grid of M = 16
points. Interestingly, the range above 250 Hz has now a
slight tendency of over-estimation (less than half a dB). Al-
though maximum determinant points are optimally condi-
tioned, their condition number is normally greater than 1.
The decomposition matrix will have a slightly larger norm

than
√

4π
M , especially for high order spherical harmonics,

which tend to become linearly dependent when sampled.
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(a) 1000 rpm
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(b) 2000 rpm
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(c) 3000 rpm
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(d) 4000 rpm

Fig. 5: Uncertainty of the equal area partitioning 20 point
grid using the near-field-involving estimator, octave band
average, (a) 1000 rpm, (b) 2000 rpm, (c) 3000 rpm, (d) 4000
rpm.
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(a) 1000 rpm
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(b) 2000 rpm
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(c) 3000 rpm
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Fig. 6: Uncertainty of the md3 16 point grid using the
near-field-involving estimator, octave band average, (a)
1000 rpm, (b) 2000 rpm, (c) 3000 rpm, (d) 4000 rpm.



7. COMPOSITE NEAR-FIELD-INVOLVING
SOUND POWER ESTIMATOR

The over-estimation tendencies of the squared sound pres-
sure summation Eq. (1) at low frequencies and the slight
one of the near-field-involving estimator Eq. (6)(7) at high
frequencies yields one conclusion:
It might be best to take the minimum of the far-field and near-
field estimators. Hence, we propose a composite estimator

Π̂ =
1

2ρ c
min

{∑
n,m

|ψ̂nm|2

k2|hn(kR)|2
,

4πR2

M

M∑
i=1

|pi|2
}
. (9)

Figure 7 shows the sound power estimates. The composite
estimator is free of noticeable systematic effects in the entire
frequency range. The slightly smaller spread around 500 Hz
is inherited from the corresponding far-field estimator, which
is not depicted.

The estimator is highly accurate until 500 Hz and loses pre-
cision in higher bands. As before, more precision in higher
bands is only achievable with denser measurement grids.

8. COARSE SAMPLING

As the statistical and systematic deficiencies in highly ac-
curate sound power estimation could be circumvented by
suitable decomposition, sampling, and composite estima-
tion, this section discusses estimation with a coarse spatial
sampling. To consider near-field-involving sound power es-
timation up to first-order radiation patterns, a four-points
sampling scheme using the corners of a tetrahedron fulfills
the requirement M = (N + 1)2.

Note in the particular case that the spherical harmonics de-
composition is done with a perfectly conditioned matrix, so
Eq. (6) equals the composite estimator Eq. (9).

Figure 8 shows an increased statistical uncertainty when
determining the sound power using these 4 points with the
composite near-field-involving estimator. The estimator cre-
ates an error of about ±1 dB up to the 500 Hz octave.

9. CONCLUSION

Sound power measurement procedures are designed for high
reproducibility. Standards specify tolerances for acoustic en-
vironments, equipment, and also layouts for the microphone
positions. Apart from standardized measurement conditions,
we showed that orientation differences between the mea-
surement grid and the sound source also cause measurement
uncertainty. Sound power estimation with discrete measure-
ment grids exhibits a rotation-variant error, compared to the
analytically determined sound power.

We performed a statistical analysis of the rotation-variant
error based on a simulated combustion engine in the free
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(b) 2000 rpm
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(c) 3000 rpm
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Fig. 7: Uncertainty of the md3 16 point grid using the com-
posite near-field-involving estimator, octave band average,
(a) 1000 rpm, (b) 2000 rpm, (c) 3000 rpm, (d) 4000 rpm.
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(b) 2000 rpm
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(c) 3000 rpm
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Fig. 8: Uncertainty of the tetrahedral grid using the compos-
ite near-field-involving estimator, octave band average, (a)
1000 rpm, (b) 2000 rpm, (c) 3000 rpm, (d) 4000 rpm.

field. Comparing the measurement grid proposed in the norm
with alternative grids, we discussed desirable measurement
grid properties: a) statistical uncertainty is minimized by
a uniform spherical sampling grid, b) only then spherical
harmonic decomposition is possible, and systematic near
field errors can be avoided.

Finally we showed that maximum determinant points com-
bined with a composite near-field-involving sound power
estimator achieve the most accurate sound power estimates.
This estimate avoids systematic over-estimation errors by
taking the minimum of a near-field-involving estimator and
the typical squared pressure sum.
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