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Introduction

There are several microphones on the market for record-
ings in B-format, but only a few for higher-order Am-
bisonic such as the mhacoustics Eigenmike EM32 which
can be seen in Fig. 1. To enable Ambisonic surround
playback, its microphone signals are first transformed
into spherical-harmonics-domain signals by a frequency-
independent matrix. Such signals are not directly appli-
cable for playback. Roughly speaking, this is because low-
frequency signals predominantly map to a non-directional
(zeroth-order) pattern on the surface of the microphone
array, so that higher-order signals require amplification.
Therefore, the transformation is followed by holographic
(radial) filters that yield the B-format signals needed for
higher-order Ambisonic playback [2] [3].

Figure 1: mh acoustics’ Eigenmike EM32 microphone for 4th

order Ambisonic recording.

Theoretical radial filtering applies extremely large bass
boosts for high orders, where, in addition to a correct
treatment of the signal, they amplify self-noise and sen-
sitivity differences between the microphones by a disas-
trous amount. Practical radial filtering must be limited
to a maximum amplification, e.g., by Tikhonov filters of
Moreau [3], or soft-limiting by Bernschütz [4].

Rettberg [5] shows the white noise gain (WNG) as a
result of amplification limitation of radial filters. In fact
WNG should be taken into account to define the crossover
frequencies instead of any dB-level limits.

How a phase-matched soft limiting can be realized based
on classical filter design methods is presented by Baum-
gartner [6]. However, all-pass filters for phase matching
could only be approximated, and we found the later IIR
implementation to be numerically critical.

Barely did the above-presented soft-limiting filters con-
sider (1) equalization, i.e. compensation for amplitude
losses due to the omitted high-order signals, (2) adapta-
tion of order weights (e.g. max-rE [1]) to all frequency
bands for an optimal suppression of all directional side

lobes, or (3) that limiting filters together with radial filters
should have a slope of about min. +6dB/oct to similarly
suppress low-frequent noise in signals of all orders.

To improve all-pass matching in soft-limiting by classical
filters, Linkwitz-Riley high- and low-pass pairs are used,
for which an identical-phase all pass exists. The graphical
description used in [9] was found to improve the presen-
tation of the final time-frequency-direction behavior.

This contribution describes how such a band-pass filter
bank can be designed to include all desired features.

The filterbank

5

3

1

7

ψ0
0

ψ−1···1
1

ψ−2···2
2

ψ−3···3
3

H0

∏
AP g0,1···4

H1

∏
AP g1,2···4

H2

∏
AP g2,3···4

H3

∏
AP g3,4

4∑
i=1

BPi

4∑
i=3

BPi

BP4

5

3

1

7

φ00

φ−1···1
1

φ−2···2
2

φ−3···3
3

4∑
i=2

BPi

Figure 2: Structure of the filter bank, with band-pass filter,
radial filter, all-pass filter, order and frequency band weighting.

Fig. 2 shows the structure of the proposed filter bank. The
Ambisonic signal is split up in band-pass channels, whose
number depends on the maximum Ambisonic order. Band
splitting is followed by corresponding radial filters and all-
pass phase equalization. All passes model what is missing
from phase responses of the other band-pass channels
and yield a fully phase-identical sub-band decomposition.
Hereby the filter bank is amplitude-complementary and
always free from destructive interference, as long as the
filter bank weights stay positive. A detailed view of a
single Ambisonic signal is shown in Fig. 3.

Radial filters

The signals ψnm are the spherical wave spectrum repre-
senting the spherical-harmonic encoded sound pressure
p on the spherical microphone array. They are found by
the above-mentioned frequency-independent matrixing of
p, the array signals, ψ = E p. From ψnm, the Ambisonic
B-format signals are obtained by holographic radial filters

φnm = kR2 h
′
n(kR)

hn(krs)
ψnm (1)
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Figure 3: Single filter channel for the Ambisonic signal ψ0
1

from Fig. 2.

that determine the Ambisonic signals on a desired play-
back radius rs. Filters depend on the array radius R and
the wave number k. hn are the Hankel functions and h′n
their derivatives [10][6].

We assume that the sources lie in the farfield, rs → ∞,
for which the Hankel functions approach

lim
rs→∞

hn(krs) =
i(n+1)e−ikrs

krs
, (2)

and hereby simplify the radial filters (constant factors rs
and R2 can be cancelled)

φnm = rs(kR)2 h′n(kR) eikrs(−i)n+1 ψnm. (3)

Because of the far-field approximation, the saturation of
the filters at lower frequencies is missing and they get even
more unstable. Nevertheless, the far-field approximation
beneficially shifts all critical poles to s = 0, which unifies
the stabilization we intend to undertake. Fig. 4 compares
far-/near-field radial filtering for a source radius rs = 3m.
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Figure 4: Far-field approximation of radial filters for the
Eigenmike compared to near-field filters (dashed) for rs = 3m.

After transferring the filters from the Laplace s- to the
z-domain [6], we observe the multiple poles from s = 0
at z = 1, Fig. 5. We are going to cancel these poles by a
high-pass filter design to provide an efficient and stable
implementation. To suppress low frequency noise by at
least a +6dB high-pass skirt, high pass filters are designed
to contain at least one more zero at z = 1 than Eq. (3).

Exact phase match: Linkwitz-Riley filters

For each radial filter of a specific order, a high-pass filter
is used to soft-limit its dynamics at a suitable cut-on
frequency.
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Figure 5: Poles-(red cross)- and zeros-(blue circle) distribu-
tion of the radial filters in the z-domain for the Eigenmike.

To allow different treatment of the ramaining lower-order
signals below this frequency, they are split into a high-pass
and low-pass band by a crossover at this frequency.

Not only is an accurately phase-matching crossover re-
quired to avoid destructive interference when recombining
the two differently weighted lower-order bands, but also
the high pass that soft-limits the respective high-order
signals must phase-match the crossover to retain a useful
surround point-spread function near the cut-on frequency.
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Figure 6: Pole-zero plots of 2nd, 4th, and 6th order discrete-
time Linkwitz-Riley crossovers transformed to π/5, exemplar-
ily. High- and low-pass (left, middle) are exactly amplitude-
complementary and phase-identical with the all-pass (right).

In the master thesis [12], perfectly phase-matching,
amplitude-complementary crossovers were proposed em-
ploying Linkwitz-Riley [8] filter pairs.

To preserve the phase match when splitting into more
than 2 bands, we can employ suitable Linkwitz-Riley all-
passes to obtain an accurately phase-matched filterbank
with all the soft-limiting cut-on frequencies.



Table 1: Number of zeros for the high-pass filter to roll of
radial filter at least by 6 dB/oct.

n no. poles RF req. no. zeros closest L-R order
0 0 1 2
1 1 2 2
2 2 3 4
3 3 4 4
4 4 5 6

Linkwitz-Riley filters are of even order, as they are built
from the square of Butterworth filters [13]. To operate the
filters in discrete time, the bilinear transform yields their
z-domain representation. Fig. 6 shows the zero and pole
positions 2nd, 4th, and 6th order Linkwitz-Riley filters.

The filterbank is composed of Linkwitz-Riley, high-, low-,
and all-passes of the cutoff frequencies fb, such that

Bb(ω) = Hfb−1
(ω)Lfb(ω)

∏

b′\{b−1,b}

Afb(ω). (4)

After including the radial filter in the band-pass filter
bank, their poles cancel with zeros from the correspond-
ing high-pass filter; to obtain a stable implementation,
canceling poles have to be explicitly removed. The re-
sulting frequency response is adjusted to yield a 1st or
2nd high-pass skirt to guarantee a roll-off of noisy signals
towards the low frequency end. Table 1 shows the number
of poles and zeros of the implementation.

Order weights and frequency band weights

Directional side lobe suppression (order weights)

The max-rE order weighting [1] suppresses directional side
lobes in the surround point-spread function that maps
a recorded plane wave. The filter-bank design allows to
weight of every frequency band b = 0 . . . 4, individual to
its maximum order N = b.

The max-rE weights [7] are non-zero for n ≤ b

gnb = anb
/
εb, (5)

anb = Pn

(
cos

(
137.9◦

b+ 1.51

))
,

where Pn is the Legendre polynomial and εb is the equal-
ization defined in the next paragraph.

Equalization (frequency band weights)

The weights 1/εb in Eq. (5) ensure equalization of the
frequency bands by either the amplitude of the omnidirec-
tional component, of the free field (on-axis response), or
of the diffuse field (random directional energy efficiency):

εb =





1, omni-dir. amplitude,√
b∑

n=0
a2
nb(2n+ 1), diffuse-field amplitude,

b∑
n=0

anb(2n+ 1), free-field amplitude.

(6)
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Figure 7: Frequency-band-specific point-spread functions
mapping a recorded plane-wave. Curves are (a) without, (b)
with diffuse-field, or (c) with free-field equalization across 5
bands of increasing order N = b, see (e); odd orders are plotted
on lower semicircle for good readability [(d) non-individual
max-rE weights b < 4 lack side-lobe suppression.]

Ideal patterns across the frequency bands are shown in
Fig. 7. Note that diffuse- and free-field equalization re-
quire gains of 13 and 22 dB in the lowest frequency band.

Cut-on frequencies that limit noise-boost

To limit the maximum noise amplification within the
entire set of Ambisonic signals, the cut-on/cross-over fre-
quencies of the filter bank must be carefully adjusted. The
adjustment is accomplished by the non-linear minimiza-
tion of the cut-on frequencies using lsqnonlin (MATLAB)
under the constraint of a limited white noise gain (WNG).
The noise boost should stay below 20 dB. In total, the low
self noise (15 dBA) of each of the 32 microphones slightly
decreases (13 dBA) by matrixing to 25 spherical-harmonic
signals, and it is finally boosted by the subsequent 20dB-
WNG-limited radial filters (33 dBA).

The noise boost G(ω) is proportional to

|G(ω)|2 ∝
4∑

b=0

b∑

n=0

(2n+ 1)
∣∣gbnBb(ω)·(kR)2h′n(kR)

∣∣2, (7)

and the optimizer finds the lowest-possible cut-on fre-
quencies fb defining the band-passes Bb(ω) achieving the
limited noise boost |G(ω)| < 20 dB, see Tab. 2.

Table 2: Frequencies of filterbank providing a 20 dB-limited
noise boost (lowest cut-on was manually defined).

b fno−eq
b fdiffuse

b f free
b

0 20 Hz 20 Hz 20 Hz
1 68 Hz 59 Hz 140 Hz
2 478 Hz 612 Hz 800 Hz
3 1405 Hz 1534 Hz 1702 Hz
4 2727 Hz 2742 Hz 2766 Hz



Point spread in time, frequency, direction

Of a recorded sound, the proposed implementation vari-
ants yield a point-spread across time, frequency, and
direction, cf. Fig. 8. The plots display the magnitude of
the point spread as brightness and its phase in color.

The proposed design (shown for φ > 0) exhibits group
delay distortion but minimal pre-ringing in time (right
col.). An alternative zero-phase representation of the
filterbank (shown for φ < 0) yields identical beam patterns
in the frequency domain (left col.) but pre-ringing in time.

Figure 8: Point-spread functions [9] in frequency (left) and
time (right) over different directions for order N=4, comparing
the zero-phase (φ < 0) and non-linear phase implementations
(φ > 0); omnidirectional equalization (top row), diffuse-field
equalization (middle row), free-field equalization (bottom row).

Conclusion

We presented a soft-knee limiting filter bank for radial
filtering in higher-order Ambisonic recordings, based on
Linkwitz-Riley filter pairs, which allowed us to design
nonlinear-phase IIR and comparable linear-phase FIR
filter banks yielding identical beam patterns. Most im-
portatly, our design approach limits radial filters towards
low frequencies to prevent low-frequency noise, allows to
control directional side lobes, and provides equalization.

The phase responses of all involved filter bands match
exactly, also far from the crossovers by additional all pass
filtering. The accurate phase match prevents cancellations
between differently-weighted filter bank channels and pre-
serves meaningful surround point-spread functions.

The proposed design is implemented and successfully in
use for demonstrations and music pieces at IEM that use
Ambisonic microphohe and spherical loudspeaker arrays.

Future work should study the following perceptual ques-
tions: Which equalization is the best for Ambisonics:
omni-directional, diffuse-field, or free-field? How should
the filters be implemented, non-linear phase or zero phase?
Listening tests should be done to evaluate.
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